scholarly journals A Randomized Bag-of-Birds Approach to Study Robustness of Automated Audio Based Bird Species Classification

2021 ◽  
Vol 11 (19) ◽  
pp. 9226
Author(s):  
Burooj Ghani ◽  
Sarah Hallerberg

The automatic classification of bird sounds is an ongoing research topic, and several results have been reported for the classification of selected bird species. In this contribution, we use an artificial neural network fed with pre-computed sound features to study the robustness of bird sound classification. We investigate, in detail, if and how the classification results are dependent on the number of species and the selection of species in the subsets presented to the classifier. In more detail, a bag-of-birds approach is employed to randomly create balanced subsets of sounds from different species for repeated classification runs. The number of species present in each subset is varied between 10 and 300 by randomly drawing sounds of species from a dataset of 659 bird species taken from the Xeno-Canto database. We observed that the shallow artificial neural network trained on pre-computed sound features was able to classify the bird sounds. The quality of classifications were at least comparable to some previously reported results when the number of species allowed for a direct comparison. The classification performance is evaluated using several common measures, such as the precision, recall, accuracy, mean average precision, and area under the receiver operator characteristics curve. All of these measures indicate a decrease in classification success as the number of species present in the subsets is increased. We analyze this dependence in detail and compare the computed results to an analytic explanation assuming dependencies for an idealized perfect classifier. Moreover, we observe that the classification performance depended on the individual composition of the subset and varied across 20 randomly drawn subsets.

Author(s):  
Burooj Ghani ◽  
Sarah Hallerberg

The automatic classification of bird sounds is an ongoing research topic and several results have been reported for the classification of selected bird species. In this contribution we use an artificial neural network fed with pre-computed sound features to study the robustness of bird sound classification. We investigate in detail if and how classification results are dependent on the number of species and the selection of species in the subsets presented to the classifier. In more detail, a bag-of-birds approach is employed to randomly create balanced subsets of sounds from different species for repeated classification runs. The number of species present in each subset is varied between 10 and 300, randomly drawing sounds of species from a dataset of 659 bird species taken from Xeno-Canto database. We observe that the shallow artificial neural network trained on pre-computed sound features is able to classify the bird sounds relatively well. The classification performance is evaluated using several common measures such as precision, recall, accuracy, mean average precision and area under the receiver operator characteristics curve. All of these measures indicate a decrease in classification success as the number of species present in the subsets is increased. We analyze this dependence in detail and compare the computed results to an analytic explanation assuming dependencies for an idealized perfect classifier. Moreover, we observe that the classification performance depends on the individual composition of the subset and varies across 20 randomly drawn subsets.


2020 ◽  
pp. 61-64
Author(s):  
Yu.G. Kabaldin ◽  
A.A. Khlybov ◽  
M.S. Anosov ◽  
D.A. Shatagin

The study of metals in impact bending and indentation is considered. A bench is developed for assessing the character of failure on the example of 45 steel at low temperatures using the classification of acoustic emission signal pulses and a trained artificial neural network. The results of fractographic studies of samples on impact bending correlate well with the results of pulse recognition in the acoustic emission signal. Keywords acoustic emission, classification, artificial neural network, low temperature, character of failure, hardness. [email protected]


2000 ◽  
Vol 20 (4) ◽  
pp. 253-261 ◽  
Author(s):  
Lindahl ◽  
Toft ◽  
Hesse ◽  
Palmer ◽  
Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document