Product Feature Extraction via Topic Model and Synonym Recognition Approach

Author(s):  
Jun Feng ◽  
Wen Yang ◽  
Cheng Gong ◽  
Xiaodong Li ◽  
Rongrong Bo
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yinping Wang

In this study, multidimensional feature extraction is performed on the U-language recordings of the test takers, and these features are evaluated separately, with five categories of features: pronunciation, fluency, vocabulary, grammar, and semantics. A deep neural network model is constructed to model the feature values to obtain the final score. Based on the previous research, this study uses a deep neural network training model instead of linear regression to improve the correlation between model score and expert score. The method of using word frequency for semantic scoring is replaced by the LDA topic model for semantic analysis, which eliminates the need for experts to manually label keywords before scoring and truly automates the critique. Also, this paper introduces text cleaning after speech recognition and deep learning-based speech noise reduction technology in the scoring model, which improves the accuracy of speech recognition and the overall accuracy of the scoring model. Also, innovative applications and improvements are made to key technologies, and the latest technical solutions are integrated and improved. A new open oral grading model is proposed and implemented, and innovations are made in the method of speech feature extraction to improve the dimensionality of open oral grading.


2021 ◽  
pp. 1-13
Author(s):  
Dangguo Shao ◽  
Chengyao Li ◽  
Chusheng Huang ◽  
Qing An ◽  
Yan Xiang ◽  
...  

Aiming at the low effectiveness of short texts feature extraction, this paper proposes a short texts classification model based on the improved Wasserstein-Latent Dirichlet Allocation (W-LDA), which is a neural network topic model based on the Wasserstein Auto-Encoder (WAE) framework. The improvements of W-LDA are as follows: Firstly, the Bag of Words (BOW) input in the W-LDA is preprocessed by Term Frequency–Inverse Document Frequency (TF-IDF); Subsequently, the prior distribution of potential topics in W-LDA is replaced from the Dirichlet distribution to the Gaussian mixture distribution, which is based on the Variational Bayesian inference; And then the sparsemax function layer is introduced after the hidden layer inferred by the encoder network to generate a sparse document-topic distribution with better topic relevance, the improved W-LDA is named the Sparse Wasserstein-Variational Bayesian Gaussian mixture model (SW-VBGMM); Finally, the document-topic distribution generated by SW-VBGMM is input to BiGRU (Bidirectional Gating Recurrent Unit) for the deep feature extraction and the short texts classification. Experiments on three Chinese short texts datasets and one English dataset represent that our model is better than some common topic models and neural network models in the four evaluation indexes (accuracy, precision, recall, F1 value) of text classification.


Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


Sign in / Sign up

Export Citation Format

Share Document