Trend Analysis of Temperature Using CRU Data for Satluj River Basin

Author(s):  
Asha Devi Singh ◽  
Mukesh Kumar Gupta ◽  
Mohammed Sharif
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Gizachew Kabite Wedajo ◽  
Misgana K. Muleta ◽  
Berhan Gessesse ◽  
Sifan A. Koriche

Abstract Background Understanding spatiotemporal climate and vegetation changes and their nexus is key for designing climate change adaptation strategies at a local scale. However, such a study is lacking in many basins of Ethiopia. The objectives of this study were (i) to analyze temperature, rainfall and vegetation greenness trends and (ii) determine the spatial relationship of climate variables and vegetation greenness, characterized using Normalized Difference in Vegetation Index (NDVI), for the Dhidhessa River Basin (DRB). Quality checked high spatial resolution satellite datasets were used for the study. Mann–Kendall test and Sen’s slope method were used for the trend analysis. The spatial relationship between climate change and NDVI was analyzed using geographically weighted regression (GWR) technique. Results According to the study, past and future climate trend analysis generally showed wetting and warming for the DRB where the degree of trends varies for the different time and spatial scales. A seasonal shift in rainfall was also observed for the basin. These findings informed that there will be a negative impact on rain-fed agriculture and water availability in the basin. Besides, NDVI trends analysis generally showed greening for most climatic zones for the annual and main rainy season timescales. However, no NDVI trends were observed in all timescales for cool sub-humid, tepid humid and warm humid climatic zones. The increasing NDVI trends could be attributed to agroforestry practices but do not necessarily indicate improved forest coverage for the basin. The change in NDVI was positively correlated to rainfall (r2 = 0.62) and negatively correlated to the minimum (r2 = 0.58) and maximum (r2 = 0.45) temperature. The study revealed a strong interaction between the climate variables and vegetation greenness for the basin that further influences the biophysical processes of the land surface like the hydrologic responses of a basin. Conclusion The study concluded that the trend in climate and vegetation greenness varies spatiotemporally for the DRB. Besides, the climate change and its strong relationship with vegetation greenness observed in this study will further affect the biophysical and environmental processes in the study area; mostly negatively on agricultural and water resource sectors. Thus, this study provides helpful information to device climate change adaptation strategies at a local scale.


2015 ◽  
Vol 17 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Sarita Gajbhiye ◽  
Chandrashekhar Meshram ◽  
Sudhir Kumar Singh ◽  
Prashant K. Srivastava ◽  
Tanvir Islam

2021 ◽  
Author(s):  
Akhtar Jahan ◽  
Mohd Khan ◽  
Nachiketa Rai ◽  
Tanveer Dar ◽  
Sudhir Kumar ◽  
...  

2020 ◽  
Vol 117 ◽  
pp. 102870 ◽  
Author(s):  
B. Nyikadzino ◽  
M. Chitakira ◽  
S. Muchuru
Keyword(s):  

Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 38
Author(s):  
Mohan Bahadur Chand ◽  
Bikas Chandra Bhattarai ◽  
Prashant Baral ◽  
Niraj Shankar Pradhananga

Study of spatiotemporal dynamics of temperature is vital to assess changes in climate, especially in the Himalayan region where livelihoods of billions of people living downstream depends on water coming from the melting of snow and glacier ice. To this end, temperature trend analysis is carried out in Narayani river basin, a major river basin of Nepal characterized by three climatic regions: tropical, subtropical and alpine. Temperature data from six stations located within the basin were analyzed. The elevation of these stations ranges from 460 to 3800 m a.s.l. and the time period of available temperature data ranges from 1960–2015. Multiple regression and empirical mode decomposition (EMD) methods were applied to fill in missing data and to detect trends. Annual as well as seasonal trends were analyzed and a Mann-Kendall test was employed to test the statistical significance of detected trends. Results indicate significant cooling trends before 1970s, and warming trends after 1970s in the majority of the stations. The warming trends range from 0.028 °C year−1 to 0.035 °C year−1 with a mean increasing trend of 0.03 °C year−1 after 1971. Seasonal trends show highest warming trends in the monsoon season followed by winter, pre-monsoon, and the post-monsoon season. However, difference in warming rates between different seasons was not significant. An average temperature lapse rate of −0.006 °C m−1 with the steepest value (−0.0064 °C m−1) in pre-monsoon season and least negative (−0.0052 °C m−1) in winter season was observed for this basin. A comparative analysis of the gap-filled data with freely available global climate datasets shows reasonable correlation thus confirming the suitability of the gap filling methods.


2016 ◽  
Vol 32 (11) ◽  
pp. 1285-1306 ◽  
Author(s):  
Sandeep Shukla ◽  
Mitthan Lal Kansal ◽  
Sanjay K. Jain

Sign in / Sign up

Export Citation Format

Share Document