scholarly journals Correction to: Seasonal trend analysis of minimum air temperature in La Plata river basin

Author(s):  
Marisa G. Cogliati ◽  
Gabriela V. Müller ◽  
Miguel A. Lovino
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 347 ◽  
Author(s):  
Ruotong Wang ◽  
Qiuya Cheng ◽  
Liu Liu ◽  
Churui Yan ◽  
Guanhua Huang

Based on three IPCC (Intergovernmental Panel on Climate Change) Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5), observed meteorological data, ERA-40 reanalysis data, and five preferred GCM (general circulation model) outputs selected from 23 GCMs of CMIP5 (Phase 5 of the Coupled Model Intercomparison Project), climate change scenarios including daily precipitation, maximum air temperature, and minimum air temperature from 2021 to 2050 in the Heihe River basin, which is the second largest inland river basin in Northwest China, were generated by constructing a statistical downscaling model (SDSM). Results showed that the SDSM had a good prediction capacity for the air temperature in the Heihe River basin. During the calibration and validation periods from 1961 to 1990 and from 1991 to 2000, respectively, the coefficient of determination (R2) and the Nash–Sutcliffe efficiency coefficient (NSE) were both larger than 0.9, while the root mean square error (RMSE) was within 20%. However, the SDSM showed a relative lower simulation efficiency for precipitation, with R2 and NSE values of most meteorological stations reaching 0.5, except for stations located in the downstream desert areas. Compared with the baseline period (1976–2005), changes in the annual mean precipitation simulated by different GCMs during 2021–2050 showed great difference in the three RCP scenarios, fluctuating from −10 to +10%, which became much more significant at seasonal and monthly time scales, except for the consistent decreasing trend in summer and increasing trend in spring. However, the maximum and minimum air temperature exhibited a similar increasing tendency during 2021–2050 in all RCP scenarios, with a higher increase in maximum air temperature, which increased as the CO2 concentration of the RCP scenarios increased. The results could provide scientific reference for sustainable agricultural production and water resources management in arid inland areas subject to climate change.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3293
Author(s):  
Zengchuan Dong ◽  
Wenhao Jia ◽  
Ranjan Sarukkalige ◽  
Guobin Fu ◽  
Qing Meng ◽  
...  

Trend detection based on hydroclimatological time series is crucial for understanding climate change. In this study, the innovative trend analysis (ITA) method was applied to investigate trends in air temperature and precipitation over the Jinsha River Basin (JRB), China, from 1961 to 2016 based on 40 meteorological stations. Climatic factors series were divided into three categories according to percentile, and the hidden trends were evaluated separately. The ITA results show that annual and seasonal temperatures have significantly increased whereas the variation range of annual temperature tended to narrow. Spatial pattern analysis of the temperature indicates that high elevation areas show more increasing trends than flat areas. Furthermore, according to ITA, significant increase trends are observed in annual precipitation and “high” category of spring precipitation. The sub-basins results show a significant decreasing trend in elevation zones of ≤2000 m and an increasing trend where elevation is >2000 m. Moreover, linkage between temperature and precipitation was analyzed and the potential impact of the combined changes was demonstrated. The results of this study provide a reference for future water resources planning in the JRB and will help advance the understanding of climate change in similar areas.


2022 ◽  
Author(s):  
Neilon Silva ◽  
Aureo Silva de Oliveira

Abstract An important requisite in any water resources management program is the knowledge of the natural processes that regulate the hydrological cycle, especially for spatial and temporal analyses of these processes. This work aimed to explore spatial and temporal trends of reference evapotranspiration (ETo), evaluate ETo variation dynamics and quantify the contribution of each one of the meteorological variables in ETo calculation in the São Francisco River basin. Daily data of maximum and minimum air temperature, mean relative air humidity, wind speed and net radiation from 101 weather stations, for the period from 1961 to 2015, were used and are part of the network of the National Institute of Meteorology (INMET). Climate trend analysis was performed using the non-parametric Mann-Kendall statistical test and the sensitivity analysis for the Penman-Monteith equation was carried out based on partial derivatives as a function of the key meteorological variables of ETo (air temperature, net radiation, wind speed and actual water vapor pressure). A significant increase (p<0.01) in vapor pressure deficit (VPD) associated with the increase in mean air temperature contributed to increments in ETo along the studied period. The scenario in the entire São Francisco River basin is of increase in the values of the climatic variables, particularly evapotranspiration (85% of basin area with increments) and rainfall (52% of basin area with decrements). Results indicate an increase in ETo variation rates of approximately 2.424 mm year-2, on average, in the entire basin. The energy term represents higher weight in ETo calculation in 81% of the basin territory.


2021 ◽  
Vol 13 (6) ◽  
pp. 1177
Author(s):  
Peijuan Wang ◽  
Yuping Ma ◽  
Junxian Tang ◽  
Dingrong Wu ◽  
Hui Chen ◽  
...  

Tea (Camellia sinensis) is one of the most dominant economic plants in China and plays an important role in agricultural economic benefits. Spring tea is the most popular drink due to Chinese drinking habits. Although the global temperature is generally warming, spring frost damage (SFD) to tea plants still occurs from time to time, and severely restricts the production and quality of spring tea. Therefore, monitoring and evaluating the impact of SFD to tea plants in a timely and precise manner is a significant and urgent task for scientists and tea producers in China. The region designated as the Middle and Lower Reaches of the Yangtze River (MLRYR) in China is a major tea plantation area producing small tea leaves and low shrubs. This region was selected to study SFD to tea plants using meteorological observations and remotely sensed products. Comparative analysis between minimum air temperature (Tmin) and two MODIS nighttime land surface temperature (LST) products at six pixel-window scales was used to determine the best suitable product and spatial scale. Results showed that the LST nighttime product derived from MYD11A1 data at the 3 × 3 pixel window resolution was the best proxy for daily minimum air temperature. A Tmin estimation model was established using this dataset and digital elevation model (DEM) data, employing the standard lapse rate of air temperature with elevation. Model validation with 145,210 ground-based Tmin observations showed that the accuracy of estimated Tmin was acceptable with a relatively high coefficient of determination (R2 = 0.841), low root mean square error (RMSE = 2.15 °C) and mean absolute error (MAE = 1.66 °C), and reasonable normalized RMSE (NRMSE = 25.4%) and Nash–Sutcliffe model efficiency (EF = 0.12), with significantly improved consistency of LST and Tmin estimation. Based on the Tmin estimation model, three major cooling episodes recorded in the "Yearbook of Meteorological Disasters in China" in spring 2006 were accurately identified, and several highlighted regions in the first two cooling episodes were also precisely captured. This study confirmed that estimating Tmin based on MYD11A1 nighttime products and DEM is a useful method for monitoring and evaluating SFD to tea plants in the MLRYR. Furthermore, this method precisely identified the spatial characteristics and distribution of SFD and will therefore be helpful for taking effective preventative measures to mitigate the economic losses resulting from frost damage.


2009 ◽  
Vol 30 (10) ◽  
pp. 2721-2726 ◽  
Author(s):  
J. Ronald Eastman ◽  
Florencia Sangermano ◽  
Bardan Ghimire ◽  
Honglei Zhu ◽  
Hao Chen ◽  
...  

Parasitology ◽  
1941 ◽  
Vol 33 (3) ◽  
pp. 331-342 ◽  
Author(s):  
H. J. Craufurd-Benson

1. The geographical distribution of cattle lice in Britain is recorded in detail. Bovicola bovis is the commonest and most widely distributed species in Britain.2. The incubation period for the eggs was found to be: Haematopinus eurysternus, 9–19 days (av. 12); Bovicola bovis, 7–10 days (av. 8); Linognathus vitula, 10–13 days; Solenopotes capillatus, 10–13 days. With eggs of H. eurysternus it was found that the higher the minimum air temperature the shorter was the incubation period.3. In H. eurysternus the average length of the instars was: 1st, 4 days; 2nd, 4 days; 3rd, 4 days; pre-oviposition period, 3–4 days. The average time for the complete life cycle, egg to egg, was 28 days.4. The maximum longevity of H. eurysternus on the host was: males, 10 days; females, 16 days. No males or females of H. eurysternus survived a starvation period of 72 hr. at 20° C. and R.H. 70 or 0–10° C. and R.H. 70–85; but some nymphs survived this period at 20° C. and R.H. 70, but none survived 96 hr. starvation.5. The maximum number of eggs recorded for one female was 24; and eggs were laid at the rate of 1–4 a day.6. The threshold of development of the eggs of H. eurysternus appears to be about 27·5° C.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Gizachew Kabite Wedajo ◽  
Misgana K. Muleta ◽  
Berhan Gessesse ◽  
Sifan A. Koriche

Abstract Background Understanding spatiotemporal climate and vegetation changes and their nexus is key for designing climate change adaptation strategies at a local scale. However, such a study is lacking in many basins of Ethiopia. The objectives of this study were (i) to analyze temperature, rainfall and vegetation greenness trends and (ii) determine the spatial relationship of climate variables and vegetation greenness, characterized using Normalized Difference in Vegetation Index (NDVI), for the Dhidhessa River Basin (DRB). Quality checked high spatial resolution satellite datasets were used for the study. Mann–Kendall test and Sen’s slope method were used for the trend analysis. The spatial relationship between climate change and NDVI was analyzed using geographically weighted regression (GWR) technique. Results According to the study, past and future climate trend analysis generally showed wetting and warming for the DRB where the degree of trends varies for the different time and spatial scales. A seasonal shift in rainfall was also observed for the basin. These findings informed that there will be a negative impact on rain-fed agriculture and water availability in the basin. Besides, NDVI trends analysis generally showed greening for most climatic zones for the annual and main rainy season timescales. However, no NDVI trends were observed in all timescales for cool sub-humid, tepid humid and warm humid climatic zones. The increasing NDVI trends could be attributed to agroforestry practices but do not necessarily indicate improved forest coverage for the basin. The change in NDVI was positively correlated to rainfall (r2 = 0.62) and negatively correlated to the minimum (r2 = 0.58) and maximum (r2 = 0.45) temperature. The study revealed a strong interaction between the climate variables and vegetation greenness for the basin that further influences the biophysical processes of the land surface like the hydrologic responses of a basin. Conclusion The study concluded that the trend in climate and vegetation greenness varies spatiotemporally for the DRB. Besides, the climate change and its strong relationship with vegetation greenness observed in this study will further affect the biophysical and environmental processes in the study area; mostly negatively on agricultural and water resource sectors. Thus, this study provides helpful information to device climate change adaptation strategies at a local scale.


Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


2021 ◽  
pp. 87-99
Author(s):  
G. KH. ISMAIYLOV ◽  
◽  
N. V. MURASCHENKOVA ◽  
I. G. ISMAIYLOVA

The results of the analysis and assessment of changes in annual and seasonal characteristics of hydrometeorological processes in a private catchment area of the Kuibyshev hydroelectric complex of the Volga river are presented. To analyze the temporal dynamics of the variability of the annual and seasonal characteristics of the hydrometeorological processes in the considered territory of the river basin we used more than 100 years of observations of annual and seasonal fluctuations of lateral inflow, total atmospheric precipitation and air temperature regimes on the Volgariver. Relationship equations for annual and seasonal changes in hydrometeorological characteristics in time are obtained. It was found that long-term fluctuations of hydrometeorological processes (lateral inflow, total atmospheric precipitation and air temperature) are characterized by tendencies (trends). The analysis of these trends showed that the non-standard climatic situation, starting from the 70s of the last century, had a very significant impact on the distribution of annual and especially on the seasonal (low-water and winter) characteristics of hydrometeorological processes. It has been established that non-standard unidirectional changes are found in the fluctuations in the total atmospheric precipitation. If the winter total precipitation is characterized over the 100-year period in question by a continuously decreasing trend,the summer-autumn period is an increasing trend. This leads to the fact that long-term fluctuations in total precipitation during the period of low water are formed as a stationary process. At the same time, the total precipitation of the spring flood and inflowing to the Kuibyshev hydroelectric unit is characterized by a constantly increasing trend.


Sign in / Sign up

Export Citation Format

Share Document