Thermogravimetric Analysis of Friction Welding of Dissimilar Material

Author(s):  
V. Raja ◽  
P. Periyasamy ◽  
G. Boopathy ◽  
E. Naveen ◽  
N. Ramanan
2019 ◽  
Vol 16 ◽  
pp. 838-842 ◽  
Author(s):  
C. Shanjeevi ◽  
Jeswin Arputhabalan ◽  
E. Pavithran ◽  
B. Raju

2013 ◽  
Vol 800 ◽  
pp. 290-293
Author(s):  
Hong Yang ◽  
Nian Suo Xie ◽  
Qiang Liu

The characteristics of welding process for aluminum-copper dissimilar material such as friction welding, explosive welding, brazing and cold pressure welding are discussed firstly in this paper. Then the welding technology and its application for aluminum-copper dissimilar material are summarized. Finally, the outlook is analyzed for the welding process of aluminum-copper dissimilar material.


2020 ◽  
Vol 170 ◽  
pp. 02004
Author(s):  
Yashwant Chapke ◽  
Dinesh Kamble ◽  
Saoud Md. Salim Shaikh

Friction welding process is a forging welding process in which work piece are joined due to heat produced by friction between two joining surfaces and upset pressure is applied by non-rotating work piece. Joining of aluminum alloy with dissimilar material is important research area to focus on as maximum aircraft structures havexx Aluminum alloy frame and aerospace designers familiar with Aluminum alloy and its design considerations. After comparison of mechanical properties and application of light weight alloys aluminum alloys, tungsten, stainless steel and copper, copper selected as dissimilar material to join with Aluminum alloy AA6063. AA 6063 also known as architectural alloy selected based upon its properties. This dissimilar joint of AA6063 and Copper has application in electrical conductors as copper is good electrical conductivity and used in maximum electrical conductors. In this research work AA6063 joined with Copper successfully using Rotary Friction Welding process. Through process study effective process parameters like Friction Pressure, Upset Pressure, Spindle Speed, and Friction Time identified and their effect on weld joint strength were studied.Testing for measuring UTS of friction welded joint conducted. Using DOE tool optimized set process parameters for friction welding identified and their effect on weld joint strength studied experimentally. Maximum UTS of 222.787 MPa for Friction welded joint achieved, bend test also performed on friction welded samples.


2013 ◽  
Vol 51 (2) ◽  
pp. 137-144
Author(s):  
Naesung Lee ◽  
Jeung Choon Goak ◽  
Tae Yang Kim ◽  
Jongwan Jung ◽  
Young-Soo Seo ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Debora Almeida ◽  
◽  
Maria de Fatima Marques ◽  

In the present work, the pyrolysis of polypropylene and polyethylene was evaluated with and without the addition of niobium oxide as catalyst by means of thermogravimetric analysis and experiments in a glass reactor. The results revealed that niobium oxide performed well in the pyrolysis of both polypropylene and polyethylene separately. For the mixture of polypropylene with polyethylene, the catalyst reduced the pyrolysis time.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


Sign in / Sign up

Export Citation Format

Share Document