Bayesian Estimation Under the t-Distribution for Financial Time Series

Author(s):  
Li-Hsien Sun ◽  
Xin-Wei Huang ◽  
Mohammed S. Alqawba ◽  
Jong-Min Kim ◽  
Takeshi Emura
Author(s):  
Monday Osagie Adenomon

This book chapter investigated the place of backtesting approach in financial time series analysis in choosing a reliable Generalized Auto-Regressive Conditional Heteroscedastic (GARCH) Model to analyze stock returns in Nigeria. To achieve this, The chapter used a secondary data that was collected from www.cashcraft.com under stock trend and analysis. Daily stock price was collected on Zenith bank stock price from October 21st 2004 to May 8th 2017. The chapter used nine different GARCH models (standard GARCH (sGARCH), Glosten-Jagannathan-Runkle GARCH (gjrGARCH), Exponential GARCH (Egarch), Integrated GARCH (iGARCH), Asymmetric Power Autoregressive Conditional Heteroskedasticity (ARCH) (apARCH), Threshold GARCH (TGARCH), Non-linear GARCH (NGARCH), Nonlinear (Asymmetric) GARCH (NAGARCH) and The Absolute Value GARCH (AVGARCH) with maximum lag of 2. Most the information criteria for the sGARCH model were not available due to lack of convergence. The lowest information criteria were associated with apARCH (2,2) with Student t-distribution followed by NGARCH(2,1) with skewed student t-distribution. The backtesting result of the apARCH (2,2) was not available while eGARCH(1,1) with Skewed student t-distribution, NGARCH(1,1), NGARCH(2,1), and TGARCH (2,1) failed the backtesting but eGARCH (1,1) with student t-distribution passed the backtesting approach. Therefore with the backtesting approach, eGARCH(1,1) with student distribution emerged the superior model for modeling Zenith Bank stock returns in Nigeria. This chapter recommended the backtesting approach to selecting reliable GARCH model.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alain Hecq ◽  
Li Sun

AbstractWe propose a model selection criterion to detect purely causal from purely noncausal models in the framework of quantile autoregressions (QAR). We also present asymptotics for the i.i.d. case with regularly varying distributed innovations in QAR. This new modelling perspective is appealing for investigating the presence of bubbles in economic and financial time series, and is an alternative to approximate maximum likelihood methods. We illustrate our analysis using hyperinflation episodes of Latin American countries.


Sign in / Sign up

Export Citation Format

Share Document