Sentiment Classification Using Hybrid Bayes Theorem Support Vector Machine Over Social Network

Author(s):  
Shashi Shekhar ◽  
Narendra Mohan
Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


Author(s):  
Jalel Akaichi

In this work, we focus on the application of text mining and sentiment analysis techniques for analyzing Tunisian users' statuses updates on Facebook. We aim to extract useful information, about their sentiment and behavior, especially during the “Arabic spring” era. To achieve this task, we describe a method for sentiment analysis using Support Vector Machine and Naïve Bayes algorithms, and applying a combination of more than two features. The output of this work consists, on one hand, on the construction of a sentiment lexicon based on the Emoticons and Acronyms' lexicons that we developed based on the extracted statuses updates; and on the other hand, it consists on the realization of detailed comparative experiments between the above algorithms by creating a training model for sentiment classification.


Author(s):  
Rashmi K. Thakur ◽  
Manojkumar V. Deshpande

Sentiment analysis is one of the popular techniques gaining attention in recent times. Nowadays, people gain information on reviews of users regarding public transportation, movies, hotel reservation, etc., by utilizing the resources available, as they meet their needs. Hence, sentiment classification is an essential process employed to determine the positive and negative responses. This paper presents an approach for sentiment classification of train reviews using MapReduce model with the proposed Kernel Optimized-Support Vector Machine (KO-SVM) classifier. The MapReduce framework handles big data using a mapper, which performs feature extraction and reducer that classifies the review based on KO-SVM classification. The feature extraction process utilizes features that are classification-specific and SentiWordNet-based. KO-SVM adopts SVM for the classification, where the exponential kernel is replaced by an optimized kernel, finding the weights using a novel optimizer, Self-adaptive Lion Algorithm (SLA). In a comparative analysis, the performance of KO-SVM classifier is compared with SentiWordNet, NB, NN, and LSVM, using the evaluation metrics, specificity, sensitivity, and accuracy, with train review and movie review database. The proposed KO-SVM classifier could attain maximum sensitivity of 93.46% and 91.249% specificity of 74.485% and 70.018%; and accuracy of 84.341% and 79.611% respectively, for train review and movie review databases.


Author(s):  
Mohd Suhairi Md Suhaimin ◽  
Mohd Hanafi Ahmad Hijazi ◽  
Rayner Alfred ◽  
Frans Coenen

<span>Sentiment analysis is directed at identifying people's opinions, beliefs, views and emotions in the context of the entities and attributes that appear in text. The presence of sarcasm, however, can significantly hamper sentiment analysis. In this paper a sentiment classification framework is presented that incorporates sarcasm detection. The framework was evaluated using a non-linear Support Vector Machine and Malay social media data. The results obtained demonstrated that the proposed sarcasm detection process could successfully detect the presence of sarcasm in that better sentiment classification performance was recorded. A best average F-measure score of 0.905 was recorded using the framework; a significantly better result than when sentiment classification was performed without sarcasm detection.</span>


Author(s):  
Adebola K. Ojo

Online Social Network (OSN) is like a virtual community where people build social networks and relations with one another. The open access to the Internet has increased the growth of OSN which has attracted intruders to exploit the weaknesses of the Internet and OSN to their own gain. The rise in the usage of OSN has posed security threats to OSN users as they share personal and sensitive information online which could be exploited by these intruders by creating profiles to carry out a series of malicious activities on the social network. In fact, it is no gain saying that the intent of creating fake accounts has adverse effect and the Internet has made it quite easy to concede one’s identity; and this makes it difficult to detect fake accounts as they try to imitate real accounts. In this study, a model that can accurately identify fake profiles in OSN which uses Natural Language Processing Technique to eliminate or reduce the size of the dataset thereby improving the overall performance of the model was proposed.  Principal Component Analysis was used for appropriate feature selection. After extraction, six attributes/features that influenced the classifier were found. Support Vector Machine (SVM), Naïve Bayes and Improved Support Vector Machine (ISVM) were used as Classifiers. ISVM introduced a penalty parameter to the standard SVM objective function to reduce the inequality constraints between the slack variables. This gave a better result of 90% than the SVM and Naïve Bayes which gave 77.4% and 77.3% respectively.


Sign in / Sign up

Export Citation Format

Share Document