scholarly journals Kernel Optimized-Support Vector Machine and Mapreduce framework for sentiment classification of train reviews

Sadhana ◽  
2018 ◽  
Vol 44 (1) ◽  
Author(s):  
Rashmi K Thakur ◽  
Manojkumar V Deshpande
Author(s):  
Rashmi K. Thakur ◽  
Manojkumar V. Deshpande

Sentiment analysis is one of the popular techniques gaining attention in recent times. Nowadays, people gain information on reviews of users regarding public transportation, movies, hotel reservation, etc., by utilizing the resources available, as they meet their needs. Hence, sentiment classification is an essential process employed to determine the positive and negative responses. This paper presents an approach for sentiment classification of train reviews using MapReduce model with the proposed Kernel Optimized-Support Vector Machine (KO-SVM) classifier. The MapReduce framework handles big data using a mapper, which performs feature extraction and reducer that classifies the review based on KO-SVM classification. The feature extraction process utilizes features that are classification-specific and SentiWordNet-based. KO-SVM adopts SVM for the classification, where the exponential kernel is replaced by an optimized kernel, finding the weights using a novel optimizer, Self-adaptive Lion Algorithm (SLA). In a comparative analysis, the performance of KO-SVM classifier is compared with SentiWordNet, NB, NN, and LSVM, using the evaluation metrics, specificity, sensitivity, and accuracy, with train review and movie review database. The proposed KO-SVM classifier could attain maximum sensitivity of 93.46% and 91.249% specificity of 74.485% and 70.018%; and accuracy of 84.341% and 79.611% respectively, for train review and movie review databases.


2018 ◽  
Vol 971 ◽  
pp. 012056
Author(s):  
I M Yulietha ◽  
S A Faraby ◽  
Adiwijaya ◽  
W C Widyaningtyas

This paper discusses an efficient algorithm for sentiment classification of online text reviews posted in social networking sites and blogs which are mostly in unstructured and ungrammatical in nature. Model proposed in this paper utilizes support vector machine supervised learning algorithm and fuzzy inference system for enhancing the degree of sentiment polarity of text reviews and providing multilevel polarity categories. Model is also able to predict degree of sentiment polarity of online reviews. The model accuracy is validated on twitter data set and compared with another earlier model.


Author(s):  
Rashmi K. Thakur ◽  
Manojkumar V. Deshpande

Online incremental learning is one of the emerging research interests among the researchers in the recent years. The sentiment classification through the online incremental learning faces many challenges due to the limitations in the memory and the computing resources available for processing the online reviews. This work has introduced an online incremental learning algorithm for classifying the train reviews. The sentiments available in the reviews provided for the public services are necessary for improving the quality of the service. This work proposes the online kernel optimization-based support vector machine (OKO-SVM) classifier for the sentiment classification of the train reviews. This paper is the extension of the previous work kernel optimization-based support vector machine (KO-SVM). The OKO-SVM classifier uses the proposed fuzzy bound for modifying the weight for each incoming review database for the particular time duration. The simulation uses the standard train review and the movie review database for the classification. From the simulation results, it is evident that the proposed model has achieved a better performance with the values of 84.42%, 93.86%, and 74.56% regarding the accuracy, sensitivity, and specificity while classifying the train review database.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

2018 ◽  
Vol 62 (5) ◽  
pp. 558-562
Author(s):  
Uchaev D.V. ◽  
◽  
Uchaev Dm.V. ◽  
Malinnikov V.A. ◽  
◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 374-379 ◽  
Author(s):  
Zhi-Li PAN ◽  
Meng QI ◽  
Chun-Yang WEI ◽  
Feng LI ◽  
Shi-Xiang ZHANG ◽  
...  

2020 ◽  
Author(s):  
Mohit Singh Dhaka ◽  
Poras Khetarpal ◽  
Neeraj Kumar

Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


Sign in / Sign up

Export Citation Format

Share Document