Machine Learning Classifiers for Android Malware Detection

Author(s):  
Prerna Agrawal ◽  
Bhushan Trivedi
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hyo-Sik Ham ◽  
Hwan-Hee Kim ◽  
Myung-Sup Kim ◽  
Mi-Jung Choi

Current many Internet of Things (IoT) services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear support vector machine (SVM) to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


Author(s):  
Jarrett Booz ◽  
Josh McGiff ◽  
William G. Hatcher ◽  
Wei Yu ◽  
James Nguyen ◽  
...  

In this article, the authors implement a deep learning environment and fine-tune parameters to determine the optimal settings for the classification of Android malware from extracted permission data. By determining the optimal settings, the authors demonstrate the potential performance of a deep learning environment for Android malware detection. Specifically, an extensive study is conducted on various hyper-parameters to determine optimal configurations, and then a performance evaluation is carried out on those configurations to compare and maximize detection accuracy in our target networks. The results achieve a detection accuracy of approximately 95%, with an approximate F1 score of 93%. In addition, the evaluation is extended to include other machine learning frameworks, specifically comparing Microsoft Cognitive Toolkit (CNTK) and Theano with TensorFlow. The future needs are discussed in the realm of machine learning for mobile malware detection, including adversarial training, scalability, and the evaluation of additional data and features.


Sign in / Sign up

Export Citation Format

Share Document