An Identity-Based Anonymous Signcryption for Vehicular Ad Hoc Networks

Author(s):  
Yong Lu ◽  
Huijie Yang
2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877254 ◽  
Author(s):  
Lanjun Dang ◽  
Jie Xu ◽  
Xuefei Cao ◽  
Hui Li ◽  
Jie Chen ◽  
...  

In vehicular ad hoc networks, establishing a secure channel between any two vehicles is fundamental. Authenticated key agreement is a useful mechanism, which can be used to negotiate a shared key for secure data transmission between authentic vehicles in vehicular ad hoc networks. Among the existing identity-based two-party authenticated key agreement protocols without pairings, there are only a few protocols that provide provable security in strong security models such as the extended Canetti–Krawczyk model. This article presents an efficient pairing-free identity-based one-round two-party authenticated key agreement protocol with provable security, which is more suitable for real-time application environments with highly dynamic topology such as vehicular ad hoc networks than the existing identity-based two-party authenticated key agreement protocols. The proposed protocol is proven secure under the passive and active adversaries in the extended Canetti–Krawczyk model based on the Gap Diffie–Hellman assumption. The proposed protocol can capture all essential security attributes including known-session key security, perfect forward secrecy, basic impersonation resistance, key compromise impersonation resistance, unknown key share resistance, no key control, and ephemeral secrets reveal resistance. Compared with the existing identity-based two-party authenticated key agreement protocols, the proposed protocol is superior in terms of computational cost and running time while providing higher security.


Vehicular Ad Hoc Networks (VANETs) are the newest for of Ad Hoc Networks in which moving vehicles act as routers and nodes to form a network. VANETs use many cryptographic approaches like symmetric key approaches, public key approaches, certificate revocation, pseudonym based approaches, identity-based cryptography, identity-based signature, Elliptical Curve Cryptography (ECC) etc. for secure communication. These techniques use public and private keys for enhancing the security of messages and all these keys are stored on hardware devices like TPDs (Temper Proof Devices) in VANETs. TPDs are protected by the cryptographic algorithms. In this present era of technology these algorithms and their online simulators are freely available on internet and can be easily intruded. There is a potential need to enhance the security of these keys. In this paper we worked on enhancing the security of ECC keys stored in TPDs of VANETs using a specific network of Artificial Neural Networks.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

Sign in / Sign up

Export Citation Format

Share Document