Deterministic 3D Seismic Damage Analysis of Guandi Concrete Gravity Dam

Author(s):  
Gaohui Wang ◽  
Wenbo Lu ◽  
Sherong Zhang
2017 ◽  
Vol 148 ◽  
pp. 263-276 ◽  
Author(s):  
Gaohui Wang ◽  
Yongxiang Wang ◽  
Wenbo Lu ◽  
Mao Yu ◽  
Chao Wang

2020 ◽  
Vol 10 (12) ◽  
pp. 4134
Author(s):  
Xiang Lu ◽  
Liang Pei ◽  
Jiankang Chen ◽  
Zhenyu Wu ◽  
Chen Chen

Concrete gravity dams are one of the most common water retention structures, some of which are located in seismically active regions. Determination of damage level after earthquakes plays an important role in assessing the safety behavior of concrete dams. Compared with the traditional performance parameters obtained from numerical simulations, such as the damage coefficient, energy dissipation, failure modes, and stress state, etc., the displacement of dams can be acquired from daily monitoring data conveniently and quickly. It is of great significance for the rapid and effective evaluation of dam properties after earthquakes. The residual displacement in the concrete gravity dam crest was adopted as the performance parameter in the paper, and the linear mapping function between the residual displacement and the damage coefficient was established based on the concrete damaged plasticity model (CDP). Based on the traditional classification method with damage coefficient, a residual displacement-based seismic damage classification method with corresponding level limits was proposed. The seismic fragility analysis of Guandi concrete gravity dam was conducted as an example to illustrate the presented methodology. The results indicate that the proposed method is reasonable, effective, and can be easily applied to different projects after slight modifications.


2018 ◽  
Vol 9 (5) ◽  
pp. 181
Author(s):  
Machach Laila ◽  
Mouzzoun Mouloud ◽  
Moustachi Oum El Khaiat ◽  
Taleb Ali

1999 ◽  
pp. 259-271
Author(s):  
Tamotsu MATSUI ◽  
Atsushi NANJO ◽  
Furitsu YASUDA ◽  
Akinori NAKAHIRA ◽  
Choji KURODA

2014 ◽  
Vol 488-489 ◽  
pp. 398-402 ◽  
Author(s):  
Hai Qing Li ◽  
Yong Jun Ni ◽  
Xin Gang Liu ◽  
Jin Xing Yan

Seismic damage was the key reason which resulted in the serviceability degradation or collapse of the bridge. How to quantify the seismic damage and evaluate the seismic performance of the bridge under earthquakes through the damage analysis was the significant research direction in the performance based seismic design. In this paper the Park-Ang model (a well-known dual parameters model) and its modification version used for the damage evaluation of the concrete structure were compared. Furthermore, through the definition of the damage indices of the models based on the modified Park-Ang model and the descending slope of the IDA(incremental dynamic analysis) curve, the seismic damage levels of the typical bridge in the urban rail transit line under the designated earthquakes were analyzed, respectively. It was shown from the results that the calculated results from the two model was essentially consistent. The damage analysis based evaluation method was feasibly used for the seismic performance evaluation of the bridge.


Sign in / Sign up

Export Citation Format

Share Document