scholarly journals Three-dimensional linear seismic analysis of normal concrete gravity dam

2021 ◽  
Vol 781 (2) ◽  
pp. 022081
Author(s):  
Taolin He ◽  
Bo Zhu ◽  
Ren Kui
Author(s):  
Ali Khaloo ◽  
David Lattanzi ◽  
Adam Jachimowicz

Dams are a critical infrastructure system for many communities, but they are also one of the most challenging to inspect. Dams are typically very large and complex structures, and the result is that inspections are often time-intensive and require expensive, specialized equipment and training to provide inspectors with comprehensive access to the structure. The scale and nature of dam inspections also introduces additional safety risks to the inspectors. Unmanned aerial vehicles (UAV) have the potential to address many of these challenges, particularly when used as a data acquisition platform for photogrammetric three-dimensional (3D) reconstruction and analysis, though the nature of both UAV and modern photogrammetric methods necessitates careful planning and coordination for integration. This paper presents a case study on one such integration at the Brighton Dam, a large-scale concrete gravity dam in Maryland, USA. A combination of multiple UAV platforms and multi-scale photogrammetry was used to create two comprehensive and high-resolution 3D point clouds of the dam and surrounding environment at intervals. These models were then assessed for their overall quality, as well as their ability to resolve flaws and defects that were artificially applied to the structure between inspection intervals. The results indicate that the integrated process is capable of generating models that accurately render a variety of defect types with sub-millimeter accuracy. Recommendations for mission planning and imaging specifications are provided as well.


2013 ◽  
Vol 405-408 ◽  
pp. 2015-2019 ◽  
Author(s):  
Joanna M. Dulinska ◽  
Anna Galuszka

The paper indicates the role of 3D modeling of concrete gravity dams in evaluation of dynamic response of dams to mining tremors which occur in mining activity regions. 2D and 3D models of a concrete gravity dam were prepared in order to compare two-and three-dimensional analysis of the dynamic response of dam to mining shock. Firstly, values of natural frequencies obtained for 2D and 3D models occurred to be very similar, but only the 3D model allowed to predict the dam behaviour under longitudinal kinematic excitation. Secondly, the comparison of the maximal principal stresses obtained for 2D and 3D models indicates that the simplified 2D analysis underestimates the values of dynamic response on about 20 %. Three-dimensional dynamic analysis allows to assess internal stresses resulting from mining shock more precisely, since the amplitudes of ground vibrations during mining tremors are comparable in three directions.


2013 ◽  
Vol 325-326 ◽  
pp. 1324-1328 ◽  
Author(s):  
Joanna Dulinska

The paper indicates the role of 3D modeling of concrete gravity dams in evaluation of dynamic response of dams to mining tremors which occur in mining activity regions. 2D and 3D models of a concrete gravity dam were prepared in order to compare two-and three-dimensional analysis of the dynamic response of dam to mining shock. Firstly, values of natural frequencies obtained for 2D and 3D models occurred to be very similar, but only the 3D model allowed to predict the dam behaviour under longitudinal kinematic excitation. Secondly, the comparison of the maximal principal stresses obtained for 2D and 3D models indicates that the simplified 2D analysis underestimates the values of dynamic response on about 20 %. Three-dimensional dynamic analysis allows to assess internal stresses resulting from mining shock more precisely, since the amplitudes of ground vibrations during mining tremors are comparable in three directions.


2014 ◽  
Vol 488-489 ◽  
pp. 565-568
Author(s):  
Dong Yu Ji

Through analyzing concrete gravity dam structures mechanical characteristics in construction process and operating process, this paper adopts finite element method to carry out structural analysis for concrete gravity dam of Shachang reservoir. Deducing distribution law of the dams stress and displacement in construction process and operating process. Analysis results show that, concrete gravity dam of Shachang reservoir is reasonable, it meets the requirements for design. The analysis results provide a certain reference for design and construction of concrete gravity dam structure.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hui Liang ◽  
Shengshan Guo ◽  
Yifu Tian ◽  
Jin Tu ◽  
Deyu Li ◽  
...  

There are various uncertainties in the design, construction, and operation of dams. These uncertainties have an important impact on the seismic response and seismic safety evaluation of concrete dams. In this research, a typical nonoverflow monolith of a concrete gravity dam is selected as a case study for the sliding stability analysis. Based on the analysis and demonstration of parameter sensitivity of friction coefficients and cohesion and their influence on the deep antisliding stability of the dam-foundation system, the probabilistic seismic analysis of a gravity dam-foundation system is carried out through Monte Carlo analysis with a large sample number. Damage levels are defined based on the sliding instability failure mode along with the corresponding threshold values of the damage index. Thus, seismic fragility analysis is investigated, and seismic fragility curves are obtained for the vulnerability assessment under earthquake hazards. The overall seismic stability of the gravity dam is evaluated, which provides the basis for the seismic safety evaluation in the probabilistic framework.


Sign in / Sign up

Export Citation Format

Share Document