Fault Detection of Smart Grid Equipment Using Machine Learning and Data Analytics

Author(s):  
Kumari Sarita ◽  
Sachin Kumar ◽  
R. K. Saket
2021 ◽  
pp. 32-42
Author(s):  
Navod Neranjan .. ◽  
◽  
◽  
◽  
◽  
...  

In the 21st century, the Smart Grid (SG), also known as the next-generation power grid, arose as a substitute for inefficient power systems, ensuring a reliable and efficient power supply. It is projected to improve the reliability and efficiency of energy distribution while having minimal side effects because it is coupled with modern communication and computation capabilities. The huge infrastructure it possesses, as well as the system's underlying communication network, has resulted in a large number of data that necessitates the use of diverse approaches for proper analysis and decision making. When it comes to analyzing this huge amount of data and generating significant insights from it, big data analytics, machine learning (ML), and deep learning (DL), all play a key role. These insights are useful for anomaly detection, fraud detection, price confirmation, fault detection, monitoring energy consumption, and so on. Hence constant and continuous data analysis is an essential part, of the modern smart grid, for its existence. Inspired by providing a reliable and efficient energy distribution, this paper explores and surveys the smart grid architectural elements, ML and DL based applications, and approaches in the context of SG. In addition in terms of ML and DL based data analytics, this paper highlights the limitations of the current research and, highlights future directions as well.


2018 ◽  
Vol 06 (06) ◽  
pp. 110-115
Author(s):  
Panchami Anil ◽  
Anas P V ◽  
Naseef Kuruvakkottil ◽  
Anusha K V ◽  
Balagopal N

Author(s):  
Sadaf Qazi ◽  
Muhammad Usman

Background: Immunization is a significant public health intervention to reduce child mortality and morbidity. However, its coverage, in spite of free accessibility, is still very low in developing countries. One of the primary reasons for this low coverage is the lack of analysis and proper utilization of immunization data at various healthcare facilities. Purpose: In this paper, the existing machine learning based data analytics techniques have been reviewed critically to highlight the gaps where this high potential data could be exploited in a meaningful manner. Results: It has been revealed from our review, that the existing approaches use data analytics techniques without considering the complete complexity of Expanded Program on Immunization which includes the maintenance of cold chain systems, proper distribution of vaccine and quality of data captured at various healthcare facilities. Moreover, in developing countries, there is no centralized data repository where all data related to immunization is being gathered to perform analytics at various levels of granularities. Conclusion: We believe that the existing non-centralized immunization data with the right set of machine learning and Artificial Intelligence based techniques will not only improve the vaccination coverage but will also help in predicting the future trends and patterns of its coverage at different geographical locations.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


Sign in / Sign up

Export Citation Format

Share Document