Design of Event-Triggered Integral Sliding Mode Controller for Systems with Matched and Unmatched Uncertainty

Author(s):  
Asifa Yesmin ◽  
Manas Kumar Bera
Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Author(s):  
Bo Su ◽  
Hongbin Wang ◽  
Ning Li

In this paper, an event-triggered integral sliding mode fixed-time control method for trajectory tracking problem of autonomous underwater vehicle (AUV) with disturbance is investigated. Initially, the global fixed time stability is ensured with conventional periodic sampling method for reference trajectory tracking. By introducing fixed time integral sliding mode manifold, fixed time control strategy is expressed for the AUV, which can effectively eliminate the singularity. Correspondingly, in order to reduce the damage caused by chattering phenomenon, an adaptive fixed-time method is proposed based on the designed continuous integral terminal sliding mode (ITSM) to ensure that the trajectory tracking for AUV is achieved in fixed-time with external disturbance. In order to reduce resource consumption in the process of transmission network, the event-triggered sliding mode control strategy is designed which condition is triggered by an event. Also, Zeno behavior is avoided by proof of theoretical. It is shown that the upper bounds of settling time are only dependent on the parameters of controller. Theoretical analysis and simulation experiment results show that the presented methods can realize the control object.


Sign in / Sign up

Export Citation Format

Share Document