Development of Laparoscopic Surgery by Means of Foldable Small Humanoid Robot Hands with Tactile Sensation for Laparoscopic Surgery

Author(s):  
Masaya Mukai ◽  
Ryu Kato ◽  
Hiroshi Yokoi
2019 ◽  
Vol 31 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Tetsuya Mouri

Humanoid robot hands are expected to replace human hands in the dexterous manipulation of objects. This paper presents a review of humanoid robot hand research and development. Humanoid hands are also applied to multifingered haptic interfaces, hand rehabilitation support systems, sEMG prosthetic hands, telepalpation systems, etc. The developed application systems in our group are briefly introduced.


2015 ◽  
Vol 1 (1) ◽  
pp. 135-139
Author(s):  
C. Wiederer ◽  
M. Fröhlich ◽  
M.W. Strohmayr

Abstract Hepatic tumors appear as stiff inclusions within the surrounding soft, healthy tissue. In open surgery they are searched for by manual palpation with the gloved fingertip. However, to exploit the benefits of MIS it is mandatory to implement a substitution for the human sense of touch. Therefore, a tactile instrument has been developed with the aim of enlarging the sensing area at the tool tip once it enters the abdominal cavity through the trocar. The provision of a large sensitive surface enables the detection of nearly all sizes of tumors and decreases the time needed for the performance of this task. A prototype was manufactured by laser sintering in PA serving as a carrier for an existing flexible silicone sensor. Automated as well as manual subject palpation tests have shown that a prototypical instrument with a laterally opening lid would be a suitable device for tumor detection in laparoscopic liver surgery.


2005 ◽  
Vol 17 (6) ◽  
pp. 655-663 ◽  
Author(s):  
Kiyoshi Hoshino ◽  
◽  
Ichiro Kawabuchi ◽  

Delicate actions such as picking up paper or a needle with the fingertips – an important function for robot hands – are extremely difficult. We propose a lightweight robot hand based on extracting minimum required motor functions and implementing them in a robot. We also propose a robot hand that realizes appropriate pinching by adding the minimum required degree of supplementary freedom realizable only mechanically. In the robot hand, we focus mainly on adding degrees of freedom for independent finger motion to the terminal joints and a degree of freedom for twisting by the thumb. The results showed that providing the fingertip with a joint with broad force control even with weak force effectively ensures delicate fingertip control in a humanoid robot hand.


Sign in / Sign up

Export Citation Format

Share Document