A Review on Applications of Simultaneous Localization and Mapping Method in Autonomous Vehicles

Author(s):  
Subhranil Das ◽  
Rashmi Kumari ◽  
S. Deepak Kumar
Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5570
Author(s):  
Yiming Ding ◽  
Zhi Xiong ◽  
Wanling Li ◽  
Zhiguo Cao ◽  
Zhengchun Wang

The combination of biomechanics and inertial pedestrian navigation research provides a very promising approach for pedestrian positioning in environments where Global Positioning System (GPS) signal is unavailable. However, in practical applications such as fire rescue and indoor security, the inertial sensor-based pedestrian navigation system is facing various challenges, especially the step length estimation errors and heading drift in running and sprint. In this paper, a trinal-node, including two thigh-worn inertial measurement units (IMU) and one waist-worn IMU, based simultaneous localization and occupation grid mapping method is proposed. Specifically, the gait detection and segmentation are realized by the zero-crossing detection of the difference of thighs pitch angle. A piecewise function between the step length and the probability distribution of waist horizontal acceleration is established to achieve accurate step length estimation both in regular walking and drastic motions. In addition, the simultaneous localization and mapping method based on occupancy grids, which involves the historic trajectory to improve the pedestrian’s pose estimation is introduced. The experiments show that the proposed trinal-node pedestrian inertial odometer can identify and segment each gait cycle in the walking, running, and sprint. The average step length estimation error is no more than 3.58% of the total travel distance in the motion speed from 1.23 m/s to 3.92 m/s. In combination with the proposed simultaneous localization and mapping method based on the occupancy grid, the localization error is less than 5 m in a single-story building of 2643.2 m2.


2021 ◽  
Vol 33 (8) ◽  
pp. 2591
Author(s):  
Chaoyang Chen ◽  
Qi He ◽  
Qiubo Ye ◽  
Guangsong Yang ◽  
Cheng-Fu Yang

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Jianjun Ni ◽  
Tao Gong ◽  
Yafei Gu ◽  
Jinxiu Zhu ◽  
Xinnan Fan

The robot simultaneous localization and mapping (SLAM) is a very important and useful technology in the robotic field. However, the environmental map constructed by the traditional visual SLAM method contains little semantic information, which cannot satisfy the needs of complex applications. The semantic map can deal with this problem efficiently, which has become a research hot spot. This paper proposed an improved deep residual network- (ResNet-) based semantic SLAM method for monocular vision robots. In the proposed approach, an improved image matching algorithm based on feature points is presented, to enhance the anti-interference ability of the algorithm. Then, the robust feature point extraction method is adopted in the front-end module of the SLAM system, which can effectively reduce the probability of camera tracking loss. In addition, the improved key frame insertion method is introduced in the visual SLAM system to enhance the stability of the system during the turning and moving of the robot. Furthermore, an improved ResNet model is proposed to extract the semantic information of the environment to complete the construction of the semantic map of the environment. Finally, various experiments are conducted and the results show that the proposed method is effective.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 38 ◽  
Author(s):  
Talha Takleh Omar Takleh ◽  
Nordin Abu Bakar ◽  
Shuzlina Abdul Rahman ◽  
Raseeda Hamzah ◽  
Zalilah Abd Aziz

The overall purpose of this paper is to provide an introductory survey in the area of Simultaneous Localization and Mapping (SLAM) particularly its utilization in autonomous vehicle or more specifically in self-driving cars, especially after the release of commercial semi-autonomous car like the Tesla vehicles as well as the Google Waymo vehicle. Before we begin diving into the concept of SLAM, we need to understand the importance of SLAM and problems that expand to the various methods developed by numerous researchers to solve it. Thus, in this paper we will start by giving the general concept behind SLAM, followed by sharing details of its different categories and the various methods that form the SLAM function in today’s autonomous vehicles; which can solve the SLAM problem. These methods are the current trends that are widely focused in the research community in producing solutions to the SLAM problem; not only in autonomous vehicle but in the robotics field as well. Next, we will compare each of these methods in terms of its pros and cons before concluding the paper by looking at future SLAM challenges. 


Sensors ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 19852-19879 ◽  
Author(s):  
Bo He ◽  
Yang Liu ◽  
Diya Dong ◽  
Yue Shen ◽  
Tianhong Yan ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 190-194 ◽  
Author(s):  
Wu Zu Yu ◽  
Huang Xin Han ◽  
Li Xin de ◽  
Wang Min ◽  
Yan Huai Cheng

Sign in / Sign up

Export Citation Format

Share Document