CFD Studies on the Modified Laparoscopic Instrument Used in Minimally Invasive Surgeries

Author(s):  
Md. Abdul Raheem Junaidi ◽  
Gourabh Pandey ◽  
K. Ram Chandra Murthy ◽  
Y. V. Daseswara Rao
2009 ◽  
Vol 3 (4) ◽  
Author(s):  
A. L. Trejos ◽  
R. V. Patel ◽  
M. D. Naish ◽  
A. C. Lyle ◽  
C. M. Schlachta

Minimally invasive surgery (MIS) is carried out using long, narrow instruments and significantly reduces trauma to the body, postoperative pain, and recovery time. Unfortunately, the restricted access conditions, limited instrument motion, and degraded sense of touch inherent in MIS result in new perceptual-motor relationships, which are unfamiliar to the surgeon and require training to overcome. Current training methods do not adequately address the needs of surgeons interested in acquiring these skills. Although a significant amount of research has been focused on the development of sensorized systems for surgery, there is still a need for a system that can be used in any training scenario (laparoscopic trainer, animal laboratories, or real surgery) for the purpose of skills assessment and training. A sensorized laparoscopic instrument has been designed that is capable of noninvasively measuring its interaction with tissue in the form of forces or torques acting in all five degrees-of-freedom (DOFs) available during MIS. Strain gauges attached to concentric shafts within the instrument allow the forces acting in different directions to be isolated. An electromagnetic tracking system is used for position tracking. Two prototypes of the sensorized instrument were constructed. Position calibration shows a maximum root mean square (RMS) error of 1.3 mm. The results of the force calibration show a maximum RMS error of 0.35 N for the actuation force, 0.07 N in the x and y directions, and 1.5 N mm for the torque calibration with good repeatability and low hysteresis. Axial measurements were significantly affected by drift, noise, and coupling leading to high errors in the readings. Novel sensorized instruments for skills assessment and training have been developed and a patent has been filed for the design and operation. The instruments measure forces and torques acting at the tip of the instrument corresponding to all five DOFs available during MIS and provide position feedback in six DOFs. The instruments are similar in shape, size, and weight to traditional laparoscopic instruments allowing them to be used in any training environment. Furthermore, replaceable tips and handles allow the instruments to be used for a variety of different tasks.


2021 ◽  
Author(s):  
Daniel Robertson ◽  
Jesudian Gnanaraj ◽  
Linda Wauben ◽  
Jan Huijs ◽  
Vasanth Mark Samuel ◽  
...  

Abstract Background Laparoscopy is a minimally-invasive surgical procedure that uses long slender instruments that require much smaller incisions than conventional surgery. This leads to faster recovery times, fewer infections and shorter hospital stays. For these reasons, laparoscopy could be particularly advantageous to patients in low to middle income countries (LMICs). Unfortunately, sterile processing departments in LMIC hospitals are faced with limited access to equipment and trained staff and poses an obstacle to safe surgical care. The reprocessing of laparoscopic devices requires specialised equipment and training. Therefore, when LMIC hospitals invest in laparoscopy, an update of the standard operating procedure in sterile processing is required. Currently, it is unclear whether LMIC hospitals, that already perform laparoscopy, have managed to introduce updated reprocessing methods that minimally invasive equipment requires. The aim of this study was to identify the laparoscopic sterile reprocessing procedures in rural India and to test the effectiveness of the sterilisation equipment. Methods We assessed laparoscopic instrument sterilisation capacity in four rural hospitals in different states in India using a mixed-methods approach. As the main form of data collection, we developed a standardised observational checklist based on reprocessing guidelines from several sources. Steam autoclave performance was measured by monitoring the autoclave cycles in two hospitals. Finally, the findings from the checklist data was supported by an interview survey with surgeons and nurses. Results The checklist data revealed the reprocessing methods the hospitals used in the reprocessing of laparoscopic instruments. It showed that the standard operating procedures had not been updated since the introduction of laparoscopy and the same reprocessing methods for regular surgical instruments were still applied. The interviews confirmed that staff had not received additional training and that they were unaware of the hazardous effects of reprocessing detergents and disinfectants. Conclusion As laparoscopy is becoming more prevalent in LMICs, updated policy is needed to incorporate minimally invasive instrument reprocessing in medical practitioner and staff training programmes. While reprocessing standards improve, it is essential to develop instruments and reprocessing equipment that is more suitable for resource-constrained rural surgical environments.


2015 ◽  
Vol 1 (1) ◽  
pp. 140-144 ◽  
Author(s):  
Timo Cuntz ◽  
Laura Comella

AbstractAlthough the use of minimally invasive surgery techniques has steadily increased, the development of new tools for these procedures has stagnated. Indeed a new generation of surgical instruments, with tips that have multiple degrees of freedom, has been developed. However, they are facing so many technical problems that none have been able to establish themselves in the medical market. To overcome the problems these instruments are facing, a micro hydraulic power transmission system has been developed and been presented in [1]. With these driving units it was possible to design an instrument for minimally invasive surgery with a tip which is movable in 3 degrees of freedom (DOF) and that is light in weight, small in size and powerful in movements and gripping. This paper presents the mechanical setup (including dimensions and materials), describes the theoretical basis for the control with the inverse kinematic model, discusses the external drives setup and gives first performance data of this novel hydraulically actuated laparoscopic instrument with 3 degrees of freedom.


Author(s):  
Daniel Robertson ◽  
Jesudian Gnanaraj ◽  
Linda Wauben ◽  
Jan Huijs ◽  
Vasanth Mark Samuel ◽  
...  

Abstract Background Laparoscopy is a minimally-invasive surgical procedure that uses long slender instruments that require much smaller incisions than conventional surgery. This leads to faster recovery times, fewer post-surgical wound infections and shorter hospital stays. For these reasons, laparoscopy could be particularly advantageous to patients in low to middle income countries (LMICs). Unfortunately, sterile processing departments in LMIC hospitals are faced with limited access to equipment and trained staff which poses an obstacle to safe surgical care. The reprocessing of laparoscopic devices requires specialised equipment and training. Therefore, when LMIC hospitals invest in laparoscopy, an update of the standard operating procedure in sterile processing is required. Currently, it is unclear whether LMIC hospitals, that already perform laparoscopy, have managed to introduce updated reprocessing methods that minimally invasive equipment requires. The aim of this study was to identify the laparoscopic sterile reprocessing procedures in rural India and to test the effectiveness of the sterilisation equipment. Methods We assessed laparoscopic instrument sterilisation capacity in four rural hospitals in different states in India using a mixed-methods approach. As the main form of data collection, we developed a standardised observational checklist based on reprocessing guidelines from several sources. Steam autoclave performance was measured by monitoring the autoclave cycles in two hospitals. Finally, the findings from the checklist data was supported by an interview survey with surgeons and nurses. Results The checklist data revealed the reprocessing methods the hospitals used in the reprocessing of laparoscopic instruments. It showed that the standard operating procedures had not been updated since the introduction of laparoscopy and the same reprocessing methods for regular surgical instruments were still applied. The interviews confirmed that staff had not received additional training and that they were unaware of the hazardous effects of reprocessing detergents and disinfectants. Conclusion As laparoscopy is becoming more prevalent in LMICs, updated policy is needed to incorporate minimally invasive instrument reprocessing in medical practitioner and staff training programmes. While reprocessing standards improve, it is essential to develop instruments and reprocessing equipment that is more suitable for resource-constrained rural surgical environments.


2016 ◽  
Vol 1 (13) ◽  
pp. 169-176
Author(s):  
Lisa M. Evangelista ◽  
James L. Coyle

Esophageal cancer is the sixth leading cause of death from cancer worldwide. Esophageal resection is the mainstay treatment for cancers of the esophagus. While curative, surgical resection may result in swallowing difficulties that require intervention from speech-language pathologists (SLPs). Minimally invasive surgical procedures for esophageal resection have aimed to reduce morbidity and mortality associated with more invasive techniques. Both intra-operative and post-operative complications, regardless of the surgical approach, can result in dysphagia. This article will review the epidemiological impact of esophageal cancers, operative complications resulting in dysphagia, and clinical assessment and management of dysphagia pertinent to esophageal resection.


Urology ◽  
2020 ◽  
Author(s):  
Alexandre Azevedo Ziomkowski ◽  
João Rafael Silva Simões Estrela ◽  
Nilo Jorge Carvalho Leão Barretto ◽  
Nilo César Leão Barretto

2007 ◽  
Vol 177 (4S) ◽  
pp. 310-310
Author(s):  
Shu-Keung Li ◽  
Chun-wing Wong ◽  
Dominic Tai ◽  
Lysander Chau ◽  
Berry Fung ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 548-548
Author(s):  
Xun Li ◽  
Guohua Zeng ◽  
Jian Yuan ◽  
Chichang Shan ◽  
Kaijun Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document