laparoscopic instrument
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Veronika Ivanova ◽  
Ani Boneva ◽  
Plamen Vasilev ◽  
Stoyan Ivanov ◽  
Svetla Lekova

Author(s):  
Daniel Robertson ◽  
Jesudian Gnanaraj ◽  
Linda Wauben ◽  
Jan Huijs ◽  
Vasanth Mark Samuel ◽  
...  

Abstract Background Laparoscopy is a minimally-invasive surgical procedure that uses long slender instruments that require much smaller incisions than conventional surgery. This leads to faster recovery times, fewer post-surgical wound infections and shorter hospital stays. For these reasons, laparoscopy could be particularly advantageous to patients in low to middle income countries (LMICs). Unfortunately, sterile processing departments in LMIC hospitals are faced with limited access to equipment and trained staff which poses an obstacle to safe surgical care. The reprocessing of laparoscopic devices requires specialised equipment and training. Therefore, when LMIC hospitals invest in laparoscopy, an update of the standard operating procedure in sterile processing is required. Currently, it is unclear whether LMIC hospitals, that already perform laparoscopy, have managed to introduce updated reprocessing methods that minimally invasive equipment requires. The aim of this study was to identify the laparoscopic sterile reprocessing procedures in rural India and to test the effectiveness of the sterilisation equipment. Methods We assessed laparoscopic instrument sterilisation capacity in four rural hospitals in different states in India using a mixed-methods approach. As the main form of data collection, we developed a standardised observational checklist based on reprocessing guidelines from several sources. Steam autoclave performance was measured by monitoring the autoclave cycles in two hospitals. Finally, the findings from the checklist data was supported by an interview survey with surgeons and nurses. Results The checklist data revealed the reprocessing methods the hospitals used in the reprocessing of laparoscopic instruments. It showed that the standard operating procedures had not been updated since the introduction of laparoscopy and the same reprocessing methods for regular surgical instruments were still applied. The interviews confirmed that staff had not received additional training and that they were unaware of the hazardous effects of reprocessing detergents and disinfectants. Conclusion As laparoscopy is becoming more prevalent in LMICs, updated policy is needed to incorporate minimally invasive instrument reprocessing in medical practitioner and staff training programmes. While reprocessing standards improve, it is essential to develop instruments and reprocessing equipment that is more suitable for resource-constrained rural surgical environments.


2021 ◽  
Author(s):  
Daniel Robertson ◽  
Jesudian Gnanaraj ◽  
Linda Wauben ◽  
Jan Huijs ◽  
Vasanth Mark Samuel ◽  
...  

Abstract Background Laparoscopy is a minimally-invasive surgical procedure that uses long slender instruments that require much smaller incisions than conventional surgery. This leads to faster recovery times, fewer infections and shorter hospital stays. For these reasons, laparoscopy could be particularly advantageous to patients in low to middle income countries (LMICs). Unfortunately, sterile processing departments in LMIC hospitals are faced with limited access to equipment and trained staff and poses an obstacle to safe surgical care. The reprocessing of laparoscopic devices requires specialised equipment and training. Therefore, when LMIC hospitals invest in laparoscopy, an update of the standard operating procedure in sterile processing is required. Currently, it is unclear whether LMIC hospitals, that already perform laparoscopy, have managed to introduce updated reprocessing methods that minimally invasive equipment requires. The aim of this study was to identify the laparoscopic sterile reprocessing procedures in rural India and to test the effectiveness of the sterilisation equipment. Methods We assessed laparoscopic instrument sterilisation capacity in four rural hospitals in different states in India using a mixed-methods approach. As the main form of data collection, we developed a standardised observational checklist based on reprocessing guidelines from several sources. Steam autoclave performance was measured by monitoring the autoclave cycles in two hospitals. Finally, the findings from the checklist data was supported by an interview survey with surgeons and nurses. Results The checklist data revealed the reprocessing methods the hospitals used in the reprocessing of laparoscopic instruments. It showed that the standard operating procedures had not been updated since the introduction of laparoscopy and the same reprocessing methods for regular surgical instruments were still applied. The interviews confirmed that staff had not received additional training and that they were unaware of the hazardous effects of reprocessing detergents and disinfectants. Conclusion As laparoscopy is becoming more prevalent in LMICs, updated policy is needed to incorporate minimally invasive instrument reprocessing in medical practitioner and staff training programmes. While reprocessing standards improve, it is essential to develop instruments and reprocessing equipment that is more suitable for resource-constrained rural surgical environments.


Author(s):  
Ibrahim Darwich ◽  
Mohammad Abuassi ◽  
Christel Weiss ◽  
Dietmar Stephan ◽  
Frank Willeke

Purpose: The advent of robotic surgery has highlighted the advantages of articulation. This dry-lab study examined the dexterity and learning effect of a new articulated laparoscopic instrument: the ArtiSential® forceps (LIVSMED, Seongnam, Republic of Korea). Methods: A peg board task was designed. Three groups of volunteers with varying levels of laparoscopic expertise were organized to perform the task: expert, intermediate and novice. The participants performed the task using articulated and straight instruments, once before a 30-min training session and once afterwards. The times required to perform the task were recorded. The performances were analyzed and compared between the groups as well as between the straight and articulated instruments. Results: The experts were significantly faster than the novices with both instruments before the 30-min training session (p = 0.0317 for each instrument). No significant time difference was found among the three groups after the 30-min training session. The decrease in the time required to perform the peg-transfer task with the articulated instrument was significantly greater in the novice and intermediate groups (p = 0.0159 for each group). No significant difference in time reduction was observed between the groups with the straight instrument. Regardless of the user, the articulated device was associated with faster task performance than the straight device after 8 hours of training (p = 0.0039). Conclusion: The ArtiSential® articulated device can improve dexterity. A significantly greater learning effect was observed in the novice and intermediate groups in comparison with experts. A plateau in the learning curve was observed after a few hours of training.


Author(s):  
Francisco Emmanuel T. Munsayac ◽  
Francheska B. Chioson ◽  
Noelle Marie D. Espiritu ◽  
Fersen N. Jimenez ◽  
Michael Bryan S. Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document