Determination of Steering Actuator Mounting Points of a Load Haul Dump Machine for Optimum Performance

Author(s):  
SreeHarsha Rowduru ◽  
N. Kumar ◽  
Vinay Partap Singh
Keyword(s):  
Author(s):  
Ryszard J. Pryputniewicz ◽  
Ryan T. Marinis ◽  
Adam R. Klempner ◽  
Peter Hefti

Development of microelectromechanical systems (MEMS) constitutes one of the most challenging tasks in today’s micromechanics. In addition to design, analysis, and fabrication capabilities, this task also requires advanced test methodologies for determination of functional characteristics of MEMS to enable refinement and optimization of their designs. Until recently, this characterization was hindered by lack of a readily available methodology. However, building on recent advances in photonics, electronics, and computer technology, we have developed an optoelectronic methodology particularly suitable for development of MEMS. In this paper, we describe the optoelectronic methodology and illustrate its use with representative examples. By quantitatively characterizing performance of MEMS, under different vibration, thermal, and other operating conditions, we can make specific suggestions for their improvements. Then, using the optoelectronic method, we can verify the effects of these improvements. In this way, we can develop better understanding of functional characteristics of MEMS, which will ensure that they are operated at optimum performance, are reliable, and are durable.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Lintu Roy ◽  
S. K. Kakoty

This paper presents the various arrangements of grooving location of two-groove oil journal bearing for optimum performance. An attempt has been made to find out the effect of different configurations of two groove oil journal bearing by changing groove locations. Various groove angles that have been considered are 10°, 20°, and 30°. The Reynolds equation is solved numerically in a finite difference grid satisfying the appropriate boundary conditions. Determination of optimum performance is based on maximization of nondimensional load, flow coefficient, and mass parameter and minimization of friction variable using genetic algorithm. The results using genetic algorithm are compared with sequential quadratic programming (SQP). The two grooved bearings in general have grooves placed at diametrically opposite directions. However, the optimum groove locations, arrived at in the present work, are not diametrically opposite.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


Sign in / Sign up

Export Citation Format

Share Document