Study on Stress Corrosion Cracking of Super 13Cr in High-Concentration Calcium Chloride Brine

Author(s):  
Ying Gao ◽  
Minjie Xu ◽  
Zhan-wei Yang ◽  
Li-wei Wang ◽  
Yang Shi ◽  
...  
Author(s):  
Peter J. Williams ◽  
Thomas L. White ◽  
J. Kenneth Torrance

The microstructure of soils (the arrangement of pores and voids, aggregation and surface characteristics of particles) is substantially modified by freezing. Soils so modified differ, in a number of important properties, from soils not previously frozen. Furthermore, each time a soil is frozen there is a redistribution of particles, moisture and solutes. Corrosion of buried pipes is known to be related to the ground conditions. Accordingly the particular nature of frozen ground needs consideration in this respect. Studies of microstructure of samples of freezing, frozen and unfrozen soils, many obtained from a full-scale experimental study of the effects of freezing on a buried pipeline, have provided an explanation for measured changes in bulk geotechnical properties of the materials. The microstructure viewed by optical microscopy, reveals the soil structure as having a complex and striking dependence on freezing history. Scanning electron microscopy shows further details in clay rich soils. Freezing at temperatures occurring in nature normally does not convert all the soil water to ice. The effects of particle surface forces is to reduce the freezing point of the water nearest a mineral surface. The distribution of solutes is radically altered, with pockets of high concentration interconnected by a liquid phase of varying concentration. A variety of other effects, relating to chemical and mechanical properties of soils subjected to freezing, have been demonstrated or can be postulated. Some of these are important in corrosion phenomena. The stresses that have been shown to occur in a pipe as a result of frost heave in the freezing soil, will also tend to increase the possibility of stress corrosion cracking.


CORROSION ◽  
1966 ◽  
Vol 22 (2) ◽  
pp. 48-52 ◽  
Author(s):  
R. F. OVERMAN

Abstract A combination of radioactive tracer and metallurgical techniques has made it possible to study some of the conditions necessary to produce chloride stress corrosion cracks in stainless steel The existence of charged areas on the surface of steel was demonstrated by autoradiography of samples exposed to solutions containing radioactive tracers. Charged areas on the surface may be created by a high concentration of small sulfide inclusions; the cracks that appeared were initiated within these charged areas. Seven nanograms of chloride on one charged area was sufficient to start corrosion and subsequent surface cracks in a surface of steel stressed by grinding.


CORROSION ◽  
1976 ◽  
Vol 32 (12) ◽  
pp. 469-471 ◽  
Author(s):  
T. R. PINCHBACK ◽  
S. P. CLOUGH ◽  
L. A. HELDT

Abstract Admiralty brass (Cu-Zn-Sn) is shown to be susceptible to stress corrosion cracking (SCC) in copper sulfate solutions. Fracture surfaces of the resultant transgranular cracks are characterized by cleavage like features. Surface analysis by scanning Auger microprobe revealed a high concentration of tin at the leading edge of the propagating stress corrosion crack. The fractographic features and the presence of tin suggest that hydrogen embrittlement may be involved in the cracking mechanism.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract AMBRONZE 413 is a copper-tin bronze recommended for plater's plates and electrical contact springs. It is relatively immune to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-201. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1985 ◽  
Vol 34 (11) ◽  

Abstract NICROFER 5716 HMoW is a nickel-chromium-molybdenum alloy with tungsten and extremely low carbon and silicon contents. It has excellent resistance to crevice corrosion, pitting and stress-corrosion cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: Ni-324. Producer or source: Vereingte Deutsche Metallwerke AG.


Sign in / Sign up

Export Citation Format

Share Document