An Empirical Study of Deep Learning Models for Abstractive Text Summarization

Author(s):  
Neha Rane ◽  
Sharvari Govilkar
Author(s):  
Janjanam Prabhudas ◽  
C. H. Pradeep Reddy

The enormous increase of information along with the computational abilities of machines created innovative applications in natural language processing by invoking machine learning models. This chapter will project the trends of natural language processing by employing machine learning and its models in the context of text summarization. This chapter is organized to make the researcher understand technical perspectives regarding feature representation and their models to consider before applying on language-oriented tasks. Further, the present chapter revises the details of primary models of deep learning, its applications, and performance in the context of language processing. The primary focus of this chapter is to illustrate the technical research findings and gaps of text summarization based on deep learning along with state-of-the-art deep learning models for TS.


Author(s):  
Himanshu Gupta ◽  
Tanmay Girish Kulkarni ◽  
Lov Kumar ◽  
Lalita Bhanu Murthy Neti ◽  
Aneesh Krishna

2021 ◽  
Vol 1950 (1) ◽  
pp. 012071
Author(s):  
Monika Sethi ◽  
Sachin Ahuja ◽  
Vinay Kukreja

Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 241
Author(s):  
Tedo Vrbanec ◽  
Ana Meštrović

Paraphrase detection is important for a number of applications, including plagiarism detection, authorship attribution, question answering, text summarization, text mining in general, etc. In this paper, we give a performance overview of various types of corpus-based models, especially deep learning (DL) models, with the task of paraphrase detection. We report the results of eight models (LSI, TF-IDF, Word2Vec, Doc2Vec, GloVe, FastText, ELMO, and USE) evaluated on three different public available corpora: Microsoft Research Paraphrase Corpus, Clough and Stevenson and Webis Crowd Paraphrase Corpus 2011. Through a great number of experiments, we decided on the most appropriate approaches for text pre-processing: hyper-parameters, sub-model selection—where they exist (e.g., Skipgram vs. CBOW), distance measures, and semantic similarity/paraphrase detection threshold. Our findings and those of other researchers who have used deep learning models show that DL models are very competitive with traditional state-of-the-art approaches and have potential that should be further developed.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document