ANN-Based Self-Tuned PID Controller for Temperature Control of Heat Exchanger

Author(s):  
Godavarthi Charan ◽  
Dasa Sampath ◽  
K. Sandeep Rao ◽  
Y. V. Pavan Kumar
2011 ◽  
Vol 32 (4) ◽  
pp. 17-32 ◽  
Author(s):  
Dawid Taler ◽  
Adam Sury

Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangersThe aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.


2015 ◽  
Vol 1113 ◽  
pp. 715-722
Author(s):  
Mohd Aizad Ahmad ◽  
Abdul Aziz Ishak ◽  
Kamariah Noor Ismail

This paper presents the performances of an enhanced fuzzy logic controller (EFLC) for simulated Heat Exchanger (HE) temperature control system. The HE system is modeled mathematically using Energy Balance Equation and simulated using MATLAB/Simulink software. The Fuzzy Inference Structure (FIS) used was Sugeno-type. EFLC comprises of two parts which are normalized FLC part and model reference (MR) part. Both normalized and MRFLC part was using Gaussian membership function (MF) with 7x7 rule bases. Set Point (SP) tests conducted for change from 43°C to 39°C, 39°C to 35°C and 43°C to 35°C. The performances on SP tests of the FLC and proposed EFLC were compared to PID controller. The results showed that EFLC produced lower decay ratio (DR) with less oscillations, reduced undershoot (US), shorter settling time (Ts) and minimum Integral Absoluter Error (IAE) compare to FLC and PID controller.


2014 ◽  
Vol 1044-1045 ◽  
pp. 881-884
Author(s):  
Xin Wang ◽  
He Pan

In the thesis the adaptive ability of neural network strong and good nonlinear approximation ability, A controller is designed based on BP neural network by the adaptive ability of neural network strong and good nonlinear approximation ability in this paper, this method changed defect of the usual PID controller that parameters of annealing furnace condition are not easy set and the ability to adapt is poor. The new method is not only has good stability, but also has high control precision and strong adaptability.


Author(s):  
Vunlop Sinlapakun ◽  
Wudhichai Assawinchaichote

This paper presents a design of PID controller for furnace temperature control system with disturbance. Currently, PID controller has been used to operate in electric furnace temperature control system because its structure is simpler compared to others. However, the issue of tuning and designing PID controller adaptively and efficiently is still open. This paper presents an improved PID controller efficiency from tuning by Nelder Mead method. The parameters of PID controller shall be obtained from the Nelder Mead optimization procedure. Errors between desired magnitude response and actual magnitude response are calculated by using the Integral of Absolute Error (IAE). The proposed Nelder Mead based PID design method is simpler, more efficient and effective than the existing traditional methods included Ziegler Nichols, Cohen-Coon and Direct Synthesis. Simulation result shows that the performance of PID controller using this proposed method is better than traditional methods and resistant to disturbance.


Author(s):  
Claudia Ruiz-Mercado ◽  
Arturo Pacheco-Vega ◽  
Kevin Peters

We develop a fuzzy rule based controller to perform on-line temperature control of a concentric-tubes heat exchanger facility. The rules were derived from dynamical values of the mass flow rates and fluid temperatures in the heat exchanger. The controller was embedded in a closed-loop single-input single-output system to control the outlet temperature of the cold fluid. The controller was constructed in two stages, the difference between them being the amount of information provided to the controller. To validate the fuzzy controller two sets of tests were carried out for maintaining a constant value of the outlet temperature under different perturbations. Results from this analysis demonstrate that the fuzzy-based controller is able to achieve control of the system, and that the information about the system provided to it is important in terms of accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document