Classification of Brain Tumors Using Deep Learning-Based Neural Networks

Author(s):  
Jayavani Vankara ◽  
Muddada Murali Krishna ◽  
Srikanth Dasari
Author(s):  
K.Ganga Durga Prasad ◽  
A.J.N. Murthy ◽  
G Narasimha ◽  
New Sinha

The brain tumors, are the maximum not unusual place and threatening disease, main to a totally quick lifestyles of their maximum grade. Thus, remedy making plans is a key level to enhance the lifestyles of sufferers. Normally, distinct photo strategies which includes CT, MRI and ultrasound photo are used to hit upon the tumor in a brain. on this approach MRI photos are used to diagnose brain tumor guide type of tumor vs non-tumor is a tough challenge for radiologosts. we gift an approach for detection and type of tumors with inside the brain. The computerized brain tumor type could be very hard challenge in brain tumor. In this approach, computerized brain tumor detection is executedwith the aid of usingthe use of Convolutional Neural Networks (CNN) type.Our proposed automation gadgetcould take an MRI and examine it to locate bengin (non-cancerous) or malignant (cancerous).


Author(s):  
Ejaz Ul Haq ◽  
Huang Jianjun ◽  
Kang Li ◽  
Hafeez Ul Haq ◽  
Tijiang Zhang

2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4017 ◽  
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Danijel Pavković

Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. This work presents developed and novel technique for deep-learning-based data-driven fault diagnosis for rotary machinery. The proposed technique input raw three axes accelerometer signal as high definition 1D image into deep learning layers which automatically extract signal features, enabling high classification accuracy. Unlike the researches carried out by other researchers, accelerometer data matrix with dimensions 6400 × 1 × 3 is used as input for convolutional neural network training. Since convolutional neural networks can recognize patterns across input matrix, it is expected that wide input matrix containing vibration data should yield good classification performance. Using convolutional neural networks (CNN) trained model, classification in one of the four classes can be performed. Additionally, number of kernels of CNN is optimized using grid search, as preliminary studies show that alternating number of kernels impacts classification results. This study accomplished the effective classification of different rotary machinery states using convolutional artificial neural network for classification of raw three axis accelerometer signal input.


Sign in / Sign up

Export Citation Format

Share Document