An Experimental Study to Evolutes Performance of PV Module at Workplace

Author(s):  
Sohankumar G. Prajapati ◽  
Sanjay R. Vyas
Keyword(s):  
2001 ◽  
Vol 67 (1-4) ◽  
pp. 397-403 ◽  
Author(s):  
Takuya Doi ◽  
Izumi Tsuda ◽  
Hiroaki Unagida ◽  
Akinobu Murata ◽  
Koichi Sakuta ◽  
...  

Author(s):  
Ankur Kumar Gupta, Et. al.

In this paper, an experimental investigation carries out on poly-crystalline photovoltaic (PV) system for performance enhancement with the help of a thin acrylic sheet (thickness- 2 mm). There are three types of systems used under this experimental setup as (i) PV module under normal conditions/ without sheet (ii) PV module under the triangular shape of the transparent sheet (iii) PV module under rectangular shape transparent sheet. The performance analysis of all three systems has been monitored in terms of open-circuit voltage, short circuit current, power, efficiency. Simultaneously, a statistical measurement approach of sun irradiation with constant temperature is carried out during the single day experimental study. The performance of the (Triangular shaped transparent sheet) TSTS configuration found superior which provide 22.064 Watt power at 12 am, whereas (Rectangular shaped transparent sheet) RSTS configuration provide 20.4 W at the same time. The TSTS configuration provides 1.12A short circuit current at 12 am, whereas RSTS configuration provides 1.02A short circuit current at the same time. The TSTS configuration provides 8.92% better value. The TSTS configuration provides 20V open-circuit voltage at 12 am, whereas RSTS configuration provides 19.8V open-circuit voltage at the same time. The TSTS configuration provides 1% higher value. So that the TSTS configuration provides the maximum output of the solar PV panel.


In this research, an experimental study of the impact of stagnant water on solar modules is investigated. Two different experiments using two identical photovoltaic (PV) modules S1 and S2 were used for the study. In the first experiment, the PV module S1 was covered with stagnant water and the second PV module was unshielded with water. In the second experiment, the PV modules were swapped with S2 covered with stagnant water and S1 unshielded with water. The experiments were carried out under normal operating temperature of PV cells at the Department of Electrical Engineering, University of Nigeria, Nsukka on latitude 6:52 degrees north, longitude 7:23 degrees. Results obtained from the first experiment show that the efficiency and power output of S1 PV module decreased by 9.3% and 8.0% respectively when compared with that of S2 PV module. In the case of output voltage and current, it was found that shielding of PV module S1 with stagnant water caused an increase in the output voltage by 1.93% and a decrease in the output current by 10.26%. In the second experiment, the efficiency and Output power of PV module S2 decreased by 9.21% and 8.18% respectively when compared with the unshielded PV module S1. In the case of voltage and current, it was found that shielding of PV module S2 with stagnant water caused an increase in the Output voltage by 1.63% and decrease in the output current by 10.91%.


2017 ◽  
Vol 23 ◽  
pp. 01001 ◽  
Author(s):  
Monadhil Al-chaderchi ◽  
K. Sopain ◽  
M. A. Alghoul ◽  
T. Salameh

2019 ◽  
Vol 6 (10) ◽  
pp. 1-7
Author(s):  
Ravi Shankar Yadav ◽  
Sunil Kumar Chaturvedi ◽  
Abhishek Bhandari

Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


Sign in / Sign up

Export Citation Format

Share Document