active cooling
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 89)

H-INDEX

26
(FIVE YEARS 7)

2022 ◽  
Vol 309 ◽  
pp. 118466
Author(s):  
Seok Min Choi ◽  
Hyun Goo Kwon ◽  
Taehyun Kim ◽  
Hee Koo Moon ◽  
Hyung Hee Cho

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Ke Liu ◽  
Yinao Su ◽  
Xiurong Dou ◽  
Wenkai Gao ◽  
Xinmiao Teng ◽  
...  

Author(s):  
Johanna Müller ◽  
Jonas Hensel ◽  
Klaus Dilger

AbstractAdditive manufacturing with steel opens up new possibilities for the construction sector. Especially direct energy deposition processes like DED-arc, also known as wire arc additive manufacturing (WAAM), is capable of manufacturing large structures with a high degree of geometric freedom, which makes the process suitable for the manufacturing of force flow-optimized steel nodes and spaceframes. By the use of high strength steel, the manufacturing times can be reduced since less material needs to be deposited. To keep the advantages of the high strength steel, the effect of thermal cycling during WAAM needs to be understood, since it influences the phase transformation, the resulting microstructure, and hence the mechanical properties of the material. In this study, the influences of energy input, interpass temperature, and cooling rate were investigated by welding thin walled samples. From each sample, microsections were analyzed, and tensile test and Charpy-V specimens were extracted and tested. The specimens with an interpass temperature of 200 °C, low energy input and applied active cooling showed a tensile strength of ~ 860–900 MPa, a yield strength of 700–780 MPa, and an elongation at fracture between 17 and 22%. The results showed the formation of martensite for specimens with high interpass temperatures which led to low yield and high tensile strengths (Rp0.2 = 520–590 MPa, Rm = 780–940 MPa) for the specimens without active cooling. At low interpass temperatures, the increase of the energy input led to a decrease of the tensile and the yield strength while the elongation at fracture as well as the Charpy impact energy increased. The formation of upper bainite due to the higher energy input can be avoided by accelerated cooling while martensite caused by high interpass temperatures need to be counteracted by heat treatment.


2021 ◽  
Author(s):  
Kenneth N Aycock ◽  
Sabrina N. Campelo ◽  
Rafael V. Davalos

Abstract Irreversible electroporation (IRE), otherwise known as non-thermal pulsed field ablation (PFA), is an attractive focal ablation modality due to its ability to destroy aberrant cells with limited disruption of extracellular tissue architecture. Despite its non-thermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested in isolated preliminary studies to limit the risk of thermal damage, but their performance compared to one another is relatively unknown. Further, the effects of pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters have not been examined. Here, we develop a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores and simulate clinical IRE treatments in pancreatic tissue. We find that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to traditional solid probes. Actively cooled probes, on the other hand, provide even more control over thermal effects within the probe vicinity and can altogether eliminate thermal damage. In practice, these differences in performance are tempered by the increased time, expense, and effort necessary to use actively cooled probes compared to traditional solid probes or those containing a PCM core.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8329
Author(s):  
Björn Pfeiffelmann ◽  
Ali Cemal Benim ◽  
Franz Joos

Thermoelectric generators (TEGs) have the ability to convert waste heat into electrical energy under unfavorable conditions and are becoming increasingly popular in academia, but have not yet achieved a broad commercial success, due to the still comparably low efficiency. To increase the efficiency and economic viability of TEGs, research is performed on the materials on one hand and on the system connection on the other. In the latter case, the net output power of the cooling system plays a key role. At first glance, passive cooling seems preferable to active cooling because it does not affect the net electrical output power. However, as shown in the present review, the active cooling is to be preferred for net output power. The situation is similar in air and water-cooling. Even though air-cooling is easier to set up, the water-cooling should be preferred to achieve higher net output power. It is shown that microchannel cooling has similar hydraulic performance to conventional cooling and inserts increase the net output power of TEG. As the review reveals that active water-cooling should be the method of choice to achieve high net output power, it also shows that a careful optimization is necessary to exploit the potential.


2021 ◽  
Vol 170 ◽  
pp. 107188
Author(s):  
Shen Tian ◽  
Xiaoye Ren ◽  
Qifan Yang ◽  
Shuangquan Shao ◽  
Zhili Sun ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11370
Author(s):  
Cristhian Pomares-Hernández ◽  
Edwin Alexander Zuluaga-García ◽  
Gene Elizabeth Escorcia Salas ◽  
Carlos Robles-Algarín ◽  
Jose Sierra Ortega

This paper presents the computational modeling of three cooling systems based on three different methods (passive, active, and hybrid), to improve the efficiency of PV panels when operating beyond the recommended temperature under standard test conditions. All simulations were implemented using the COMSOL Multiphysics software. In the passive method, through-holes were made in the solar panel, to allow the transfer of heat by convection due to the air flow. In the active method, water was used to cool the solar panel, spraying it on the front when the operating temperature reaches a threshold value. The analysis includes both fluid dynamics and heat transfer effects. In addition, a hybrid method that uses both passive and active cooling methods simultaneously was implemented. Finally, a mathematical model for the PV panel is presented, which allowed obtaining the changes in the output power from the reduction in the operating temperature. Results demonstrated improvements in the performance of the solar panel with the implementation of the three cooling systems, showing better performance in the active and hybrid methods compared to the passive method.


Sign in / Sign up

Export Citation Format

Share Document