Dynamics of Rigid-Flexible Robots and Multibody Systems

2022 ◽  
Author(s):  
Paramanand Vivekanand Nandihal ◽  
Ashish Mohan ◽  
Subir Kumar Saha
2013 ◽  
Vol 30 (1) ◽  
pp. 13-35 ◽  
Author(s):  
Maria Augusta Neto ◽  
Jorge A. C. Ambrósio ◽  
Luis M. Roseiro ◽  
A. Amaro ◽  
C. M. A. Vasques

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1359
Author(s):  
Marin Marin ◽  
Dumitru Băleanu ◽  
Sorin Vlase

The formalism of multibody systems offers a means of computer-assisted algorithmic analysis and a means of simulating and optimizing an arbitrary movement of a possible high number of elastic bodies in the connection [...]


Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


Author(s):  
Andreas Müller ◽  
Shivesh Kumar

AbstractDerivatives of equations of motion (EOM) describing the dynamics of rigid body systems are becoming increasingly relevant for the robotics community and find many applications in design and control of robotic systems. Controlling robots, and multibody systems comprising elastic components in particular, not only requires smooth trajectories but also the time derivatives of the control forces/torques, hence of the EOM. This paper presents the time derivatives of the EOM in closed form up to second-order as an alternative formulation to the existing recursive algorithms for this purpose, which provides a direct insight into the structure of the derivatives. The Lie group formulation for rigid body systems is used giving rise to very compact and easily parameterized equations.


Author(s):  
Diana Estévez Schwarz ◽  
René Lamour

AbstractThe recently developed new algorithm for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization opens new possibilities to apply Taylor series integration methods. In this paper, we show how corresponding projected explicit and implicit Taylor series methods can be adapted to DAEs of arbitrary index. Owing to our formulation as a projected optimization problem constrained by the derivative array, no explicit description of the inherent dynamics is necessary, and various Taylor integration schemes can be defined in a general framework. In particular, we address higher-order Padé methods that stand out due to their stability. We further discuss several aspects of our prototype implemented in Python using Automatic Differentiation. The methods have been successfully tested on examples arising from multibody systems simulation and a higher-index DAE benchmark arising from servo-constraint problems.


Sign in / Sign up

Export Citation Format

Share Document