Dynamic Stress Response and Fatigue Life of Cantilever Beam Under Non-Gaussian Base Excitation

2021 ◽  
pp. 63-79
Author(s):  
Yu Jiang ◽  
Junyong Tao ◽  
Xun Chen
1990 ◽  
Vol 8 (3) ◽  
pp. 435-447 ◽  
Author(s):  
A. M. Ahemd ◽  
M. Tissakht ◽  
S. C. Shrivastava ◽  
K. Chan

2012 ◽  
Vol 215-216 ◽  
pp. 826-831 ◽  
Author(s):  
Yu Chen ◽  
Zhi Ming Liu ◽  
Qiang Li

This study developed a fatigue reliability method for evaluating and improving the key parts on railway vehicles, which was applied to real structures. The study involved a type of single-arm current collector, while its contact shoe often collapsed in operation and needs improvements. The dynamic stress data from the actual line was tested and converted to load spectra based on damage consistency rule, and then the fatigue life of the contact shoe structure was achieved. The calculation result comes to correspond to its operation life. Based on the method, an improving plan for the structure was developed under optimizing algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


2008 ◽  
Vol 44-46 ◽  
pp. 733-738 ◽  
Author(s):  
Bing Rong Miao ◽  
Wei Hua Zhang ◽  
Shou Ne Xiao ◽  
Ding Chang Jin ◽  
Yong Xiang Zhao

Railway vehicle structure fatigue life consumption monitoring can be used to determine fatigue damage by directly or indirectly monitoring the loads placed on critical vehicle components susceptible to failure from fatigue damage. The sample locomotive carbody structure was used for this study. Firstly, the hybrid fatigue analysis method was used with Multi-Body System (MBS) simulation and Finite Element Method (FEM) for evaluating the carbody structure dynamic stress histories. Secondly, the standard fatigue time domain method was used in fatigue analysis software FE-FATIGUE and MATLAB WAFO (Wave Analysis for Fatigue and Oceanography) tools. And carbody structure fatigue life and fatigue damage were predicted. Finally, and carbody structure dynamic stress experimental data was taken from this locomotive running between Kunming-Weishe for this analysis. The data was used to validate the simulation results based on hybrid method. The analysis results show that the hybrid method prediction error is approximately 30.7%. It also illustrates that the fatigue life and durability of the locomotive can be predicted with this hybrid method. The results of this study can be modified to be representative of the railway vehicle dynamic stress test.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kuanyu Chen ◽  
Guangwu Yang ◽  
Jianjun Zhang ◽  
Shoune Xiao ◽  
Yang Xu

In this study, a non-Gaussian excitation acceleration method is proposed, using aluminum alloy notched specimens as a research object and measured acceleration signal of a certain airborne bracket, during aircraft flight as input excitations, based on the fatigue damage spectrum (FDS) theory. The kurtosis and skewness of the input signal are calculated and the non-Gaussian characteristics and amplitude distribution are evaluated. Five task segments obey a non-Gaussian distribution, while one task segment obeys a Gaussian distribution. The fatigue damage spectrum calculation method of non-Gaussian excitation is derived. The appropriate FDS calculation method is selected for each task segment and the acceleration parameters are set to construct the acceleration power spectral density, which is equivalent to the pseudo-acceleration damage. A finite-element model is established, the notch stress concentration factor of the specimen is calculated, the large mass point method is used to simulate the shaking table excitation, and a random vibration analysis is carried out to calculate the accelerated fatigue life. The simulation results show that the relative error between the original cumulative damage and test original fatigue life is 15.7%. The shaking table test results show that the relative error of fatigue life before and after acceleration is less than 16.95%, and the relative error of test and simulation is 24.27%. The failure time of the specimen is accelerated from approximately 12 h to 1 h, the acceleration ratio reaches 12, and the average acceleration ideal factor is 1.125, which verifies the effectiveness of the acceleration method. It provides a reference for the compilation of the load spectrum and vibration endurance acceleration test of other airborne aircraft equipment.


Sign in / Sign up

Export Citation Format

Share Document