Parametric Resonance in Cantilever Beam with Feedback-Induced Base Excitation

Author(s):  
Nikul Jani ◽  
G. Chakraborty
2012 ◽  
Vol 12 (02) ◽  
pp. 285-310 ◽  
Author(s):  
M. EFTEKHARI ◽  
M. MAHZOON ◽  
S. ZIAEI-RAD

In this paper, a comparative study is performed for a symmetrically laminated composite cantilever beam with and without a tip mass under harmonic base excitation. The base is subjected to both flapwise and chordwise excitations tuned to the primary resonances of the two directions and conditions of 2:1 autoparametric resonance. In the literature, the governing nonlinear equations of the same problem without tip mass have been derived using the extended Hamilton's principle. Extension is made in this study to include the effect of a tip mass on the response of the beam. The natural frequencies are obtained numerically using the diversity guided evolutionary algorithm (DGEA). Next, the multiple scales method is applied to determine the nonlinear response and stability of the system. A set of four first-order differential equations describing the modulation of the amplitudes and phases of interacting modes are derived for the perturbation analysis. For verification, the above equations are reduced to the special case of the cantilever beam without tip mass for comparison with existing results. Finally, the effect of the tip mass on the stability of the fixed points and on the amplitude of oscillation about the equilibrium points in both the frequency and force modulation responses is examined.


2004 ◽  
Vol 126 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Hiroshi Yabuno ◽  
Tomohiko Murakami ◽  
Jun Kawazoe ◽  
Nobuharu Aoshima

The dynamic response of a parametrically excited cantilever beam with a pendulum is theoretically and experimentally presented. The equation of motion and the associated boundary conditions are derived considering the static friction of the rotating motion at the supporting point (pivot) of the pendulum. It is theoretically shown that the static friction at the pivot of the pendulum plays a dominant role in the suppression of parametric resonance. The boundary conditions are different between two states in which the motion of the pendulum is either trapped by the static friction or it is not. Because of this variation of the boundary conditions depending on the pendulum motion, the natural frequencies of the system are automatically and passively changed and the bifurcation set for the parametric resonance is also shifted, so that parametric resonance does not occur. Experimental results also verify the effect of the pendulum on the suppression of parametric resonance in the cantilever beam.


Sign in / Sign up

Export Citation Format

Share Document