Experimental Investigation on Warm Incremental Sheet Forming Assisted with Oil Bath Heating

2021 ◽  
pp. 23-31
Author(s):  
San Zhang ◽  
Hongbo Kang ◽  
Xiangkui Jiang ◽  
G. H. Tang ◽  
Junsuo Qu
2011 ◽  
Vol 473 ◽  
pp. 847-852 ◽  
Author(s):  
Giuseppina Ambrogio ◽  
Luigino Filice ◽  
Francesco Gagliardi

Flexible sheet metal forming processes represent one of the most relevant industrial issues of the scientific research. Incremental Sheet Forming is one of the most promising answers for many production scenarios. In particular, it becomes competitive when the production lot size decreases and the production variability increases. The process is basically set up on numerically controlled machines: a blank is clamped at its border and progressively deformed by a punch that moves according to a proper tool path program, reproducing the final part shape. Thus, the manufacturing time is directly dependent on the tool path length. Up to now, this aspect is one of the reasons why a systematic industrial application is not permitted. To overcome this drawback, an experimental investigation was planned in order to evaluate how the process is affected changing the cycle time. More in detail, an extended experimental investigation on the influence of process speed (i.e. tool rotation speed, tool feed) and other process parameters was executed taking into account a relatively simple 3D component. An accurate analysis of the obtained parts was performed, with particular attention to the thinning distribution that, of course, influences the material failure. Finally, the surface quality was also measured as an output variable.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


Author(s):  
Yan-Le Li ◽  
Zi-Jian Wang ◽  
Wei-Dong Zhai ◽  
Zi-Nan Cheng ◽  
Fang-Yi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document