A Nonlinear Coupling-Based Motion Trajectory Planning Method for Double-Pendulum Rotary Crane Subject to State Constraints

Author(s):  
Gang Li ◽  
Xin Ma ◽  
Zhi Li ◽  
Yibin Li
2020 ◽  
pp. 002029402094496
Author(s):  
Huimin Ouyang ◽  
Xiang Xu ◽  
Guangming Zhang

In the control research on the rotary crane systems with double-pendulum effect, a motion trajectory with both simple structure and excellent robust performance is proposed to achieve the positioning of the boom and the suppression of the load sway. The presented trajectory consists of an anti-swing component and a boom positioning component, where the first part is used to achieve the sway angle elimination without affecting boom positioning; the second one is used to move the boom to the desired location precisely. The Lyapunov technique, LaSalle’s invariance theorem, and Barbalat’s lemma are used to prove the excellent performance of the method. Eventually, the effectiveness of the proposed method was verified through a large amount of simulation data analysis.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Juntong Qi ◽  
Yuan Ping ◽  
Mingming Wang ◽  
Chong Wu

This study investigates the trajectory planning problem for double-pendulum quadrotor transportation systems. The goal is to restrain the hook swing and payload swing while achieving precise positioning. An online trajectory planning method with two capabilities—precise positioning and swing suppression—is proposed. The stability and convergence of the system are proved using the Lyapunov principle and the LaSalle’s invariance theory. Simulation results show that the proposed method has excellent control performance.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62142-62151 ◽  
Author(s):  
Zhuoqing Liu ◽  
Tong Yang ◽  
Ning Sun ◽  
Yongchun Fang

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.


2021 ◽  
Author(s):  
Heqiang Tian ◽  
Jingbo Pan ◽  
Yu Gao ◽  
Bin Tian ◽  
Debao Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document