scholarly journals Trajectory Planning Method for Mixed Vehicles Considering Traffic Stability and Fuel Consumption at the Signalized Intersection

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Chen ◽  
Cong Yan ◽  
Jian Sun ◽  
Yunpeng Wang ◽  
Shenyang Chen ◽  
...  

Variations in vehicle fuel consumption and gas emissions are usually associated with changes in cruise speed and the aggressiveness of drivers’ acceleration/deceleration, especially at traffic signals. In an attempt to enhance vehicle fuel efficiency on arterials, this study developed a dynamic eco-driving speed guidance strategy (DESGS) using real-time signal timing and vehicle positioning information in a connected vehicle (CV) environment. DESGS mainly aims to optimize the fuel/emission speed profiles for vehicles approaching signalized intersections. An optimization-based rolling horizon and a dynamic programming approach were proposed to track the optimal guided velocity for individual vehicles along the travel segment. In addition, a vehicle specific power (VSP) based approach was integrated into DESGS to estimate the fuel consumption and CO2 emissions. To evaluate the effectiveness of the overall strategy, 15 experienced drivers were recruited to participate in interactive speed guidance experiments using multivehicle driving simulators. It was found that compared to vehicles without speed guidance, those with DESGS had a significantly reduced number of stops and approximately 25% less fuel consumption and CO2 emissions.


2019 ◽  
Vol 11 (23) ◽  
pp. 6819
Author(s):  
Sangjun Park ◽  
Kyoungho Ahn ◽  
Hesham A. Rakha

Traffic signal priority is an operational technique employed for the smooth progression of a specific type of vehicle at signalized intersections. Transit signal priority is the most common type of traffic signal priority, and it has been researched extensively. Conversely, the impacts of freight signal priority (FSP) has not been widely investigated. Hence, this study aims to evaluate the energy and environmental impacts of FSP under connected vehicle environment by utilizing a simulation testbed developed for the multi-modal intelligent transportation signal system. The simulation platform consists of VISSIM microscopic traffic simulation software, a signal request messages distributor program, an RSE module, and an Econolite ASC/3 traffic controller emulator. The MOVES model was employed to estimate the vehicle fuel consumption and emissions. The simulation study revealed that the implementation of FSP significantly reduced the fuel consumption and emissions of connected trucks and general passenger cars; the network-wide fuel consumption was reduced by 11.8%, and the CO2, HC, CO, and NOX emissions by 11.8%, 28.3%, 24.8%, and 25.9%, respectively. However, the fuel consumption and emissions of the side-street vehicles increased substantially due to the reduced green signal times on the side streets, especially in the high truck composition scenario.


2008 ◽  
Vol 22 (4) ◽  
pp. 587-602 ◽  
Author(s):  
René Haijema ◽  
Jan van der Wal

This article presents a novel approach for the dynamic control of a signalized intersection. At the intersection, there is a number of arrival flows of cars, each having a single queue (lane). The set of all flows is partitioned into disjoint combinations of nonconflicting flows that will receive green together. The dynamic control of the traffic lights is based on the numbers of cars waiting in the queues. The problem concerning when to switch (and which combination to serve next) is modeled as a Markovian decision process in discrete time. For large intersections (i.e., intersections with a large number of flows), the number of states becomes tremendously large, prohibiting straightforward optimization using value iteration or policy iteration. Starting from an optimal (or nearly optimal) fixed-cycle strategy, a one-step policy improvement is proposed that is easy to compute and is shown to give a close to optimal strategy for the dynamic problem.


2018 ◽  
Vol 67 (10) ◽  
pp. 9060-9072 ◽  
Author(s):  
Qingfeng Lin ◽  
Shengbo Eben Li ◽  
Xuejin Du ◽  
Xiaowu Zhang ◽  
Huei Peng ◽  
...  

Author(s):  
Meiqi Liu ◽  
Meng Wang ◽  
Serge Hoogendoorn

Cooperative (automated) vehicles have the potential to enhance traffic efficiency and fuel economy on urban roads, especially at signalized intersections. An optimal control approach to optimize the trajectories of cooperative vehicles at fixed-timing signalized intersections along an arterial is presented. The proposed approach aims to optimize throughput first, and then to maximize comfort while minimizing travel delay and fuel consumption. The proposed approach is flexible in dealing with both quadratic and more complex cost functions. Assuming fixed timing signal control in a cycle and vehicle-to-infrastructure communication, the red phase is taken into account in position constraints for vehicles that cannot pass the intersection in the green phase. Safety is guaranteed by constraining the inter-vehicle distance larger than some desired value. The approach is scalable and can be used for joint trajectory planning of one platoon approaching another stationary platoon. It can also be extended to multiple intersections with fixed signal plans. To verify the performances of the controlled platoon, simulation under three different traffic scenarios is conducted, namely: an isolated intersection with/without downstream vehicle queues, and platoon control at multiple intersections. Three baseline scenarios without control are also designed to compare performances in relation to both mobility and fuel consumption in each controlled scenario. The results demonstrate that the controlled vehicles generate plausible behavior under control objectives and constraints. Moreover, the consideration of downstream vehicle queues and the application at both an isolated signalized intersection and arterial corridors on urban roads verify the flexible characteristics of the control framework.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Gaby Joe Hannoun ◽  
Pamela Murray-Tuite ◽  
Kevin Heaslip ◽  
Thidapat Chantem

This paper introduces a semi-automated system that facilitates emergency response vehicle (ERV) movement through a transportation link by providing instructions to downstream non-ERVs. The proposed system adapts to information from non-ERVs that are nearby and downstream of the ERV. As the ERV passes stopped non-ERVs, new non-ERVs are considered. The proposed system sequentially executes integer linear programs (ILPs) on transportation link segments with information transferred between optimizations to ensure ERV movement continuity. This paper extends a previously developed mathematical program that was limited to a single short segment. The new approach limits runtime overhead without sacrificing effectiveness and is more suitable to dynamic systems. It also accommodates partial market penetration of connected vehicles using a heuristic reservation approach, making the proposed system beneficial in the short-term future. The proposed system can also assign the ERV to a specific lateral position at the end of the link, a useful capability when next entering an intersection. Experiments were conducted to develop recommendations to reduce computation times without compromising efficiency. When compared with the current practice of moving to the nearest edge, the system reduces ERV travel time an average of 3.26 s per 0.1 mi and decreases vehicle interactions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3864
Author(s):  
Tarek Ghoul ◽  
Tarek Sayed

Speed advisories are used on highways to inform vehicles of upcoming changes in traffic conditions and apply a variable speed limit to reduce traffic conflicts and delays. This study applies a similar concept to intersections with respect to connected vehicles to provide dynamic speed advisories in real-time that guide vehicles towards an optimum speed. Real-time safety evaluation models for signalized intersections that depend on dynamic traffic parameters such as traffic volume and shock wave characteristics were used for this purpose. The proposed algorithm incorporates a rule-based approach alongside a Deep Deterministic Policy Gradient reinforcement learning technique (DDPG) to assign ideal speeds for connected vehicles at intersections and improve safety. The system was tested on two intersections using real-world data and yielded an average reduction in traffic conflicts ranging from 9% to 23%. Further analysis was performed to show that the algorithm yields tangible results even at lower market penetration rates (MPR). The algorithm was tested on the same intersection with different traffic volume conditions as well as on another intersection with different physical constraints and characteristics. The proposed algorithm provides a low-cost approach that is not computationally intensive and works towards optimizing for safety by reducing rear-end traffic conflicts.


Sign in / Sign up

Export Citation Format

Share Document