scholarly journals Boom motion trajectory generation approach for load sway rejection in rotary cranes considering double-pendulum effect

2020 ◽  
pp. 002029402094496
Author(s):  
Huimin Ouyang ◽  
Xiang Xu ◽  
Guangming Zhang

In the control research on the rotary crane systems with double-pendulum effect, a motion trajectory with both simple structure and excellent robust performance is proposed to achieve the positioning of the boom and the suppression of the load sway. The presented trajectory consists of an anti-swing component and a boom positioning component, where the first part is used to achieve the sway angle elimination without affecting boom positioning; the second one is used to move the boom to the desired location precisely. The Lyapunov technique, LaSalle’s invariance theorem, and Barbalat’s lemma are used to prove the excellent performance of the method. Eventually, the effectiveness of the proposed method was verified through a large amount of simulation data analysis.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huimin Ouyang ◽  
Jian Wang ◽  
Guangming Zhang ◽  
Lei Mei ◽  
Xin Deng

In the double-pendulum rotary crane case, the load sway properties become more complicated so that the difficulty of design and analysis of crane control system is increased. Moreover, the change of rope length not only affects the stability of the system, but also leads to the decline of control performance. In order to solve the foregoing problems, a simple model for controller design is obtained by linearizing and decoupling the complex nonlinear model of rotary crane. Then, a linear feedback controller which can furnish robust performance is presented. Finally, numerical simulations verify the effectiveness of the proposed method by comparing with a traditional approach.


2019 ◽  
Vol 53 (1-2) ◽  
pp. 141-150 ◽  
Author(s):  
Menghua Zhang ◽  
Yongfeng Zhang ◽  
Bing Ji ◽  
Changhui Ma ◽  
Xingong Cheng

As typical underactuated systems, tower crane systems present complicated nonlinear dynamics. For simplicity, the payload swing is traditionally modeled as a single-pendulum in existing works. Actually, when the hook mass is close to the payload mass, or the size of the payload is large, a tower crane may exhibit double-pendulum effects. In addition, existing control methods assume that the hook and the payload only swing in a plane. To tackle the aforementioned practical problems, we establish the dynamical model of the tower cranes with double-pendulum and spherical-pendulum effects. Then, on this basis, an energy-based controller is designed and analyzed using the established dynamic model. To further obtain rapid hook and payload swing suppression and elimination, the swing part is introduced to the energy-based controller. Lyapunov techniques and LaSalle’s invariance theorem are provided to demonstrate the asymptotic stability of the closed-loop system and the convergence of the system states. Simulation results are illustrated to verify the correctness and effectiveness of the designed controller.


2011 ◽  
Vol 181-182 ◽  
pp. 571-576
Author(s):  
Jin Zhu ◽  
Wei Kang ◽  
Xiu Mei Zhang

A new algorithm which is the average local best position is presented to replace the local best of the traditional velocity update rule. One particle can acquire more messages of the other particles to adjust is movement in this method. Integrating PSO algorithm with PID controller, the three parameters of the PID controller can be optimized, which has the features of simple structure, easy implementation and robust performance. The simulation shows the PID controller integrated with the improved PSO algorithm achieved a good performance.


2020 ◽  
Vol 17 (5) ◽  
pp. 2349-2353
Author(s):  
P. Venkatesh Kumar ◽  
S. Anbumalar ◽  
V. Yamini

The purpose of this paper is to model a simple phase locked loop for grid application. One of the most challenging issues is the phase detection for grid application. The signal estimator with PLL is used for better phase detection which has a simple structure and gives fast dynamic response for grid application with robust performance. The simulation results show the effective performance of the proposed PLL.


2011 ◽  
Vol 130-134 ◽  
pp. 2027-2030
Author(s):  
Jun Wu ◽  
Chao Fan Zhang

Half-band filter is a linear phase FIR filter, which is symmetric-even and odd .Because the coefficient of half-band filter is symmetrical and nearly half of the coefficient are zero, it make the filters reduce the number of multiplication operations by almost 3 / 4, and the number of addition operations by nearly half . The memory used to store filter coefficients are also reduced by half, so it make the implementation of efficient real-time digital signal processing more conducive. The half-band filter has many characteristics: for instance, simple structure, easy to implement and excellent performance, it is widely used in multi-rate system. This paper first describes the principle of half-band FIR filter, the character and method for implementation, then puts forward the design and simulation process which is based on MATLAB and Xilinx's half-band filter, and at last analyses the result.


2004 ◽  
Vol 471-472 ◽  
pp. 140-143 ◽  
Author(s):  
Ning He ◽  
Liang Li ◽  
X.L. Li

Gas cooled cutting is an important branch of green machining technology with its excellent cooling performance and is used more and more widely in field of machining. A new method of developing cooling gas generator using semiconductor refrigeration is presented in this paper. Then the main principle, structure and performance of the generator are introduced. In addition, the experiments of high speed milling of Ti Alloy using cooled nitrogen gas were conducted and satisfactory results were achieved. These researches show that the new cooling gas generator has a series of merits such as simple structure, excellent performance, handy operation, low cost and significant spreading value etc.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Leila Safari ◽  
Erkan Yuce ◽  
Shahram Minaei

In this paper, the simplest possible electronically adjustable transresistance-mode (TRM) instrumentation amplifier (IA) using only eight MOS transistors is presented. Extremely simple structure of the proposed IA leads to a wide bandwidth and robust performance against mismatches and parasitic capacitances. Of more interest is that the differential-mode gain of the proposed IA can be electronically varied by control voltages. Post-layout and pre-layout simulation results based on 0.18[Formula: see text][Formula: see text]m TSMC CMOS parameters are included to confirm the validity of the theoretical analysis. Despite extremely simple structure, its input and output impedances are 1.93 and 1.68[Formula: see text]k[Formula: see text], respectively. Time domain analysis shows that for an input signal of 20[Formula: see text][Formula: see text]A peak to peak, maximum value of THD is 4.5% for different frequencies. Monte Carlo simulation is also carried out, which proves robust performance of the proposed IA against mismatches. The required chip area is only [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document