Prediction of In-Cylinder Swirl in a Compression Ignition Engine with Vortex Tube Using Artificial and Recurrent Neural Networks

Author(s):  
Manimaran Renganathan
2008 ◽  
Vol 132 (1) ◽  
pp. 44-49
Author(s):  
Krzysztof BRZOZOWSKI ◽  
Jacek NOWAKOWSKI

The paper presents an application of artificial neural network in modelling the working process in compression ignition engine. In order to determine the usefulness of proposed method the optimisation task has been formulated. The aim of optimisation process was to find the engine control parameters which enable reduction of the NOx emission. In order to solve the problem, the model equations has to be integrated for values of control parameters whose are given as output from the neural networks implemented.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Author(s):  
Naiara Lima Costa ◽  
Ramon Eduardo Pereira Silva ◽  
Letícia Schneider Ferrari

Sign in / Sign up

Export Citation Format

Share Document