Internal Quality Classification of Apples Based on Near Infrared Spectroscopy and Evidence Theory

2021 ◽  
pp. 321-330
Author(s):  
Xue Li ◽  
Liyao Ma ◽  
Shuhui Bi ◽  
Tao Shen
2019 ◽  
pp. 289-294
Author(s):  
S.H.E.J. Gabriels ◽  
B. Brouwer ◽  
H. de Villiers ◽  
E. Westra ◽  
E.J. Woltering

2015 ◽  
Vol 8 (12) ◽  
pp. 2383-2391 ◽  
Author(s):  
Ellen Neyrinck ◽  
Stefaan De Smet ◽  
Liesbeth Vermeulen ◽  
Danny Telleir ◽  
Stefaan Lescouhier ◽  
...  

2007 ◽  
Vol 55 (22) ◽  
pp. 9128-9134 ◽  
Author(s):  
Tony Woodcock ◽  
Gerard Downey ◽  
J. Daniel Kelly ◽  
Colm O’Donnell

2018 ◽  
Vol 112 ◽  
pp. 85-92 ◽  
Author(s):  
Lívia Ribeiro Costa ◽  
Paulo Fernando Trugilho ◽  
Paulo Ricardo Gherardi Hein

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2362 ◽  
Author(s):  
Alexander E. Hramov ◽  
Vadim Grubov ◽  
Artem Badarin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


Sign in / Sign up

Export Citation Format

Share Document