Seismic Vibration Mitigation of Damped Outrigger Structure Using a Passive Damper

Author(s):  
Kavyashree ◽  
Shantharama Patil ◽  
Vidya S. Rao
2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Wanrun Li ◽  
Qing Zhang ◽  
Zhou Yang ◽  
Qingxin Zhu ◽  
Yongfeng Du

Wind turbines have been increasingly erected in earthquake regions to harvest abundant wind energy. However, the wind turbine tower is slender and lightly damping, which exhibits high susceptibility to earthquake-induced vibration. It is challenging to mitigate the seismic vibration of the tower. In this study, a bi-directional tuned mass damper (BTMD) is proposed to mitigate the seismic vibration of the wind turbine tower. Meanwhile, a lumped-mass finite element model (LFEM) and a coupled blade tower finite element model (CBFEM) are used to investigate the vibration mitigation performance of the BTMD. First, the BTMD and corresponding dynamic equilibrium equations are systemically introduced. Accordingly, the optimum stiffness and damping of the BTMD at different mass ratios are investigated. Then, the dynamic prosperities of the LFEM and CBFEM are compared. Subsequently, the seismic responses of the wind turbine with the BTMD are conducted using the LFEM and CBFEM. Meanwhile, the mitigation performances of the BTMD under uni- and bi-directional earthquakes are investigated. The displacement, acceleration, and bending moment of the wind turbine tower are analyzed in time domain and frequency domain. Note that the influential factors, including mass ratio and structural frequency, on the vibration mitigation performance of the BTMD are investigated. Results show that the proposed BTMD can significantly mitigate the peak values of the top displacement and bottom bending moment. However, the blade tower coupling effect and frequency variation of the tower would have influences on the mitigation efficiency of the BTMD. The results enable a better understanding of the seismic vibration mitigation of the wind turbine tower using tuned mass dampers.


2013 ◽  
Vol 569-570 ◽  
pp. 270-277 ◽  
Author(s):  
Aparna Dey Ghosh ◽  
Soumi Bhattacharyya ◽  
Anuja Roy

The post-earthquake function of elevated water tank structures so as respond to the civil water requirements is of extreme significance. These structures are, however, extremely vulnerable to seismic conditions and there has been substantial damage/failure of several such structures during major earthquakes. A review of the damage and performance of some elevated water tanks subjected to earthquakes is presented in this paper. An investigation is also made on the seismic vibration control of elevated water tank structures by using Tuned Liquid Dampers (TLDs). A frequency domain formulation for the transfer function of the elevated water tank with attached TLDs is developed. Numerical studies on a reinforced concrete elevated water tank with shaft type support are carried out. The effect of detuning on the performance of the TLDs due to the change in the structural frequencies resulting from the fluctuating water level in the water tank is also examined. Results indicate that it is possible to design a fairly robust and effective TLD system for the seismic vibration mitigation of the considered elevated water tank.


2011 ◽  
Vol 2 (3) ◽  
pp. 68-70 ◽  
Author(s):  
Kanase Sandip S ◽  
◽  
Jadhav Vishvas S

2020 ◽  
Vol 67 (6) ◽  
pp. 4752-4761 ◽  
Author(s):  
Shanming Wang ◽  
Jianfeng Hong ◽  
Yuguang Sun ◽  
Haixiang Cao

Sign in / Sign up

Export Citation Format

Share Document