Waterproofing for Underground Structures Without Basement Drainage System: Assessing the Robustness of a Negative-Side Waterproofing Solution

2021 ◽  
pp. 1291-1299
Author(s):  
Quoc-Bao Bui ◽  
Thanh-Tich Do ◽  
Nguyen-Trinh Dang ◽  
Souliya Inthavongsone
Author(s):  
S. Troisi ◽  
V. Baiocchi ◽  
S. Del Pizzo ◽  
F. Giannone

Actually complex underground structures and facilities occupy a wide space in our cities, most of them are often unsurveyed; cable duct, drainage system are not exception. Furthermore, several inspection operations are performed in critical air condition, that do not allow or make more difficult a conventional survey. In this scenario a prompt methodology to survey and georeferencing such facilities is often indispensable. <br><br> A visual based approach was proposed in this paper; such methodology provides a 3D model of the environment and the path followed by the camera using the conventional photogrammetric/Structure from motion software tools. The key-role is played by the lens camera; indeed, a fisheye system was employed to obtain a very wide field of view (FOV) and therefore high overlapping among the frames. The camera geometry is in according to a forward motion along the axis camera. Consequently, to avoid instability of bundle adjustment algorithm a preliminary calibration of camera was carried out. A specific case study was reported and the accuracy achieved.


Author(s):  
E. M. B. Sorensen ◽  
R. R. Mitchell ◽  
L. L. Graham

Endemic freshwater teleosts were collected from a portion of the Navosota River drainage system which had been inadvertently contaminated with arsenic wastes from a firm manufacturing arsenical pesticides and herbicides. At the time of collection these fish were exposed to a concentration of 13.6 ppm arsenic in the water; levels ranged from 1.0 to 20.0 ppm during the four-month period prior. Scale annuli counts and prior water analyses indicated that these fish had been exposed for a lifetime. Neutron activation data showed that Lepomis cyanellus (green sunfish) had accumulated from 6.1 to 64.2 ppm arsenic in the liver, which is the major detoxification organ in arsenic poisoning. Examination of livers for ultrastructural changes revealed the presence of electron dense bodies and large numbers of autophagic vacuoles (AV) and necrotic bodies (NB) (1), as previously observed in this same species following laboratory exposures to sodium arsenate (2). In addition, abnormal lysosomes (AL), necrotic areas (NA), proliferated rough endoplasmic reticulum (RER), and fibrous bodies (FB) were observed. In order to assess whether the extent of these cellular changes was related to the concentration of arsenic in the liver, stereological measurements of the volume and surface densities of changes were compared with levels of arsenic in the livers of fish from both Municipal Lake and an area known to contain no detectable level of arsenic.


2019 ◽  
Vol 62 (5) ◽  
pp. 1486-1505
Author(s):  
Joshua M. Alexander

PurposeFrequency lowering in hearing aids can cause listeners to perceive [s] as [ʃ]. The S-SH Confusion Test, which consists of 66 minimal word pairs spoken by 6 female talkers, was designed to help clinicians and researchers document these negative side effects. This study's purpose was to use this new test to evaluate the hypothesis that these confusions will increase to the extent that low frequencies are altered.MethodTwenty-one listeners with normal hearing were each tested on 7 conditions. Three were control conditions that were low-pass filtered at 3.3, 5.0, and 9.1 kHz. Four conditions were processed with nonlinear frequency compression (NFC): 2 had a 3.3-kHz maximum audible output frequency (MAOF), with a start frequency (SF) of 1.6 or 2.2 kHz; 2 had a 5.0-kHz MAOF, with an SF of 1.6 or 4.0 kHz. Listeners' responses were analyzed using concepts from signal detection theory. Response times were also collected as a measure of cognitive processing.ResultsOverall, [s] for [ʃ] confusions were minimal. As predicted, [ʃ] for [s] confusions increased for NFC conditions with a lower versus higher MAOF and with a lower versus higher SF. Response times for trials with correct [s] responses were shortest for the 9.1-kHz control and increased for the 5.0- and 3.3-kHz controls. NFC response times were also significantly longer as MAOF and SF decreased. The NFC condition with the highest MAOF and SF had statistically shorter response times than its control condition, indicating that, under some circumstances, NFC may ease cognitive processing.ConclusionsLarge differences in the S-SH Confusion Test across frequency-lowering conditions show that it can be used to document a major negative side effect associated with frequency lowering. Smaller but significant differences in response times for correct [s] trials indicate that NFC can help or hinder cognitive processing, depending on its settings.


Author(s):  
Nan Zhang ◽  
Yichen Tian ◽  
Jingwen Wang ◽  
Mohamed Al-Hussein

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Melisa Permatasari ◽  
M. Candra Nugraha ◽  
Etih Hartati

<p>The rain intensity is the high rainfall in unit of time. The length of rain will be reversed by the amount rain intensity. The shorter time the rain lasts, the greater of the intensity and re-period of its rain. The value of rain intensity is required to calculate the flood discharge plan on the drainage system planning area in East Karawang district. Determining the value rain intensity is required the maximum daily rainfall data obtained from the main observer stations in the Plawad station planning area. The method of determination rain intensity analysis can be done with three methods: Van Breen, Bell Tanimoto and Hasper der Weduwen. Selected method is based on the smallest deviation value. Determination deviation value is determined by comparing rain intensity value of Van Breen method, Bell Tanimoto, Hasper der Weduwen. By comparing rain intensity value of the Van Breen method, Bell Tanimoto, Hasper der Weduwen with the results of calculating three methods through the method approach Talbot, Sherman and Ishiguro. Calculation results show that the method of rain has smallest deviation standard is method Van Breen with Talbot approach for rainy period (PUH) 2, 5, 10, 25, 50 and 100 years.</p>


The study of the transport and capture of particles moving in a fluid flow in a porous medium is an important problem of underground hydromechanics, which occurs when strengthening loose soil and creating watertight partitions for building tunnels and underground structures. A one-dimensional mathematical model of long-term deep filtration of a monodisperse suspension in a homogeneous porous medium with a dimensional particle retention mechanism is considered. It is assumed that the particles freely pass through large pores and get stuck at the inlet of small pores whose diameter is smaller than the particle size. The model takes into account the change in the permeability of the porous medium and the permissible flow through the pores with increasing concentration of retained particles. A new spatial variable obtained by a special coordinate transformation in model equations is small at any time at each point of the porous medium. A global asymptotic solution of the model equations is constructed by the method of series expansion in a small parameter. The asymptotics found is everywhere close to a numerical solution. Global asymptotic solution can be used to solve the inverse filtering problem and when planning laboratory experiments.


2012 ◽  
Vol 7 (3) ◽  
pp. 91-98 ◽  
Author(s):  
Zuzana Pálinkášová ◽  
Andrej Šoltész
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document