Sustainable Production of Biochar, Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste

Author(s):  
Rohit Dalal ◽  
Roshan Wathore ◽  
Nitin Labhasetwar
2021 ◽  
Vol 9 (4) ◽  
pp. 105614
Author(s):  
Ibrahim Gbolahan Hakeem ◽  
Pobitra Halder ◽  
Mojtaba Hedayati Marzbali ◽  
Savankumar Patel ◽  
Sazal Kundu ◽  
...  

2021 ◽  
Vol 405 ◽  
pp. 126705
Author(s):  
Javier Remón ◽  
Marina Casales ◽  
Jesús Gracia ◽  
María S. Callén ◽  
José Luis Pinilla ◽  
...  

2021 ◽  
pp. 131821
Author(s):  
Fanghua Li ◽  
Kena Zhao ◽  
Tsan Sheng Adam Ng ◽  
Yanjun Dai ◽  
Chi-Hwa Wang

2022 ◽  
Vol 301 ◽  
pp. 113925
Author(s):  
Diego A. Esquivel-Hernández ◽  
J. Saúl García-Pérez ◽  
Itzel Y. López-Pacheco ◽  
Hafiz M.N. Iqbal ◽  
Roberto Parra-Saldívar

2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


GCB Bioenergy ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stefanie Arnold ◽  
Karin Moss ◽  
Nicolaus Dahmen ◽  
Marius Henkel ◽  
Rudolf Hausmann

2018 ◽  
Vol 154 ◽  
pp. 01036 ◽  
Author(s):  
Bachrun Sutrisno ◽  
Arif Hidayat

The palm oil industry is currently growing rapidly and generating large amounts of biomass waste that is not utilized properly. Palm empty fruit bunch (PEFB), by product of palm oil industry is considered as a promising alternative and renewable energy source that can be converted to a liquid product by pyrolysis process. In this work, pyrolysis of PEFB was studied to produce bio-oil. Pyrolysis experiments were carried out in a bench scale tubular furnace reactor. The effects of pyrolysis temperatures (400–600 °C) at heating rate of 10 °C/min to optimize the pyrolysis process for maximum liquid yield were investigated. The characteristics of bio-oil were analyzed using FTIR and GC–MS. The results showed that the maximum bio-oil yield was 44.5 wt. % of the product at 450 °C. The bio-oil products were mainly composed of acids, aldehydes, ketones, alcohols, phenols, and oligomers. The chemical characterization showed that the bio-oil obtained from PEFB may be potentially valuable as a fuel and chemical feedstock.


Sign in / Sign up

Export Citation Format

Share Document