Compressive Strength and Water Absorption Characteristics of Brick Using Quarry Dust

InCIEC 2014 ◽  
2015 ◽  
pp. 51-64
Author(s):  
Maureena Jurliel Abdullah ◽  
Zakiah Ahmad ◽  
Atikah Fatma Md. Daud ◽  
Nur Kamaliah Mustaffa
2017 ◽  
Vol 3 (10) ◽  
pp. 809 ◽  
Author(s):  
Kasım Mermerdaş ◽  
Dia Eddin Nassani ◽  
Mehmet Sakin

This study evaluates the effect of waste polyethylene terephthalate (PET) granules on the fresh, mechanical and absorption characteristics of self-consolidating concretes (SCCs). Fine aggregates were replaced with different percentages (from 0% to 8%) of PET granules obtained by crushing waste PET bottles. The fresh properties of SCC containing PET granules were determined using slump flow and V-funnel flow time tests. Mechanical properties (compressive strength and splitting tensile strength tests) and absorption properties (sorptivity and water absorption tests) were evaluated. The results indicated that utilization of waste PET granules in production of SCC could be an effective way for recycling purpose. The maximum amount of PET replacement should be limited to 5%. Exceeding 5% of PET content may result in an increase of V-funnel flow time to overpass the limiting value, decrease in compressive strength, reduction in sorptivity and increase in the water absorption. The production of high performance SCC containing 5% PET granules satisfies all the requirements for SCC with satisfactory outputs.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012185
Author(s):  
R Premkumar ◽  
J Khaja mohideen ◽  
M Mathan kumar ◽  
T Sundara moorthi ◽  
X. Celestin

Abstract In recent years, there has been a lot of attention paid to the use of textile sludge waste-based products in the building industry to develop ecologically friendly construction materials. An experimental examination of the characteristics of bricks incorporating textile sludge waste and fly ash is presented in this work. In fly ash bricks, fly ash is used to replace textile sludge waste in the following proportions: For the blend percentage of cement, fly ash, and quarry dust, a 230mm × 100mm × 75mm sample size was used. For varying amounts of the components indicated previously, the findings indicate how compressive strength and water absorption fluctuate with curing age. Then we can cast bricks with various mixed proportions of cement, sludge waste, fly ash, and quarry dust using the 230mm × 100mm × 75mm specimen size. After that, the weight, compressive strength, and water absorption of textile sludge with different concentrations of fly ash bricks were compared. This inquiry is primarily concentrated on maximizing the compressive strength of newly produced bricks while limiting weight density and water absorption through extensive laboratory work. The recognition of elements influencing the diverse qualities of bricks is a clear purpose of pursuing this issue as project work.


2021 ◽  
Vol 4 (4) ◽  
pp. 432-437
Author(s):  
Muhammad Magana Aliyu ◽  
Muhammad Musa Nuruddeen ◽  
Yahaya Atika Nura

This research was carried out to investigate the effect of partially replacing cement with quarry dust in cement-sand mortar. Tests including setting times, water absorption, compressive strength and density test were carried out on mortar with cement partially replaced with 0%, 5%, 10%, 15%, 20%, 25% and 30% quarry dust and presented. Experimental results show that replacement of quarry dust as partial replacement of cement in cement-sand mortar decrease the initial and final setting times of cement paste and increase the water absorption of the mortar. The partial replacement shows an improvement of compressive strength at 5% quarry dust content after which there is a decrease with increase in quarry dust content at all the ages. The increase in compressive strength at 5% indicates possible pozzalanic activity at that level. Thus quarry dust can be utilized as cement replacement material at 5% dust content. Above this it can be utilized as fine aggregate replacement for use in low-strength mortar applications


Author(s):  
Odiase Stephen Ovbeniyekede ◽  
Dyg. Siti Quraisyah Abg. Adenan ◽  
Mushtaq Ahmad ◽  
Kartini Kamaruddin

2013 ◽  
Vol 795 ◽  
pp. 697-700
Author(s):  
Alaa.A. Shakir ◽  
Sivakumar Naganathan ◽  
Kamal Nasharuddin Bin Mustapha

This paper presents the findings on an investigation done on the use of Quarry dust, Fly ash and Billet scale in developing bricks. Bricks were made with various proportions of those materials and cement. Tests for fresh density, compressive strength, and water absorption were conducted. The compressive strength of bricks ranged from (7.2-26.3) MPa, the water absorption fell in range between (13-14.26) %. The optimum ratio of Fly ash and Billet scale is 1:1. It is shown that bricks with enhanced properties can be developed using these industrial wastes.


2019 ◽  
Vol 1 (6) ◽  
pp. 192-197
Author(s):  
Kanchana T ◽  
Jamunabharathi M ◽  
Thaththathirian S

This study involves the experimental investigation of effect of fly ash and dry sludge on the properties of fly ash bricks. On seeing the present day demand for bricks, an attempt is made to study the behavior of bricks manufactured using, different waste materials like dry sludge and fly ash. The main aim of this work was to compare the compressive strength of the bricks. The disposal of sludge has always been by dumping in the soil, this has hazardous effect on the air and environment at large. They can be recycled for use in construction industry without producing any harm to human and environment. Research has shown that they can be used in manufacturing of cement. Sludge and fly ash mixed with Quarry dust and cement in various percentage keeping the Quarry dust and cement with constant percentage of 30% and 20% respectively, while fly ash is replaced with sludge from 0% to 100% consequently with 20% replacement. The result shows that fly ash and sludge together can be used in the alternative bricks, the compressive strength and water absorption is good and weight of the brick is reduced up to10% from the nominal bricks.


Author(s):  
J.M. Irwan Irwan ◽  
◽  
N. Othman ◽  
H.B. Koh ◽  
◽  
...  

Sand cement brick among favorable building material for low cost house construction due to its low price. Technology development in building material already explored varies waste to be added in improving properties of building materials. Beside that addition of bacteria in building material also proven in literature to improve its properties. In this research addition of bacteria in the cement sand block containing quarry dust (SCBQD) was studied. Several properties namely, compressive strength, depth of carbonation, initial rate of suction (IRS) and water absorption were studied. SCBQD is made from sand, cement, quarry dust and chipping using industrial mix design. In this study, 3% of Enterococcus faecalis (EF) and 5% of Bacillus sp (BSP) bacteria was added in the SCBQD mixes. Three SCBQD mixes were prepared including the control mix without bacteria, SCBQD with 3% EF and SCBQD with 5% BSP. Natural fine aggregate was replaced partially with the quarry dust. 100 mm SCBQD cubes were used to conduct compressive strength, depth of carbonation, initial rate of suction and water absorption test at 7, 14 and 28 days. The experimental results showed that the compressive strength value of SCBQD with addition of bacteria was increased for all curing ages. At 28 days of curing, the compressive strength value for control SCBQD containing quarry without any addition of bacteria is 3.30 MPa, while SCBQD containing quarry dust with addition of 3% of EF bacteria is 3.57 MPa and for SCBQD with 5% of BSP bacteria the value is 4.90 MPa. On the other hand, SCBQD containing 3% EF and 5% BSP gained lower IRS and carbonation depth. Depth of carbonation at 28 days was decreased 9.3% and 20% for SCBQD containing 3% EF and 5% BSP, respectively. Meanwhile, 28-day IRS was reduced 12.9% and 22.6% for SCBQD containing 3% EF and 5% BSP, respectively. In overall, the result shows that, SCBQD with 5% BSP as proven positive and better results when compared to control SCBQD and SCBQD with 3% EF bacteria which is absorb of 12.02% in water absorption. The findings showed that bio-SCBQD containing industrial waste and bacteria has good potential to be used as building material.


Sign in / Sign up

Export Citation Format

Share Document