scholarly journals Models for predicting compressive strength and water absorption of laterite-quarry dust cement block using mixture experiment

2017 ◽  
Vol 36 (2) ◽  
pp. 366 ◽  
Author(s):  
F. O. Okafor ◽  
E. A. Egbe
InCIEC 2014 ◽  
2015 ◽  
pp. 51-64
Author(s):  
Maureena Jurliel Abdullah ◽  
Zakiah Ahmad ◽  
Atikah Fatma Md. Daud ◽  
Nur Kamaliah Mustaffa

2021 ◽  
Vol 2070 (1) ◽  
pp. 012185
Author(s):  
R Premkumar ◽  
J Khaja mohideen ◽  
M Mathan kumar ◽  
T Sundara moorthi ◽  
X. Celestin

Abstract In recent years, there has been a lot of attention paid to the use of textile sludge waste-based products in the building industry to develop ecologically friendly construction materials. An experimental examination of the characteristics of bricks incorporating textile sludge waste and fly ash is presented in this work. In fly ash bricks, fly ash is used to replace textile sludge waste in the following proportions: For the blend percentage of cement, fly ash, and quarry dust, a 230mm × 100mm × 75mm sample size was used. For varying amounts of the components indicated previously, the findings indicate how compressive strength and water absorption fluctuate with curing age. Then we can cast bricks with various mixed proportions of cement, sludge waste, fly ash, and quarry dust using the 230mm × 100mm × 75mm specimen size. After that, the weight, compressive strength, and water absorption of textile sludge with different concentrations of fly ash bricks were compared. This inquiry is primarily concentrated on maximizing the compressive strength of newly produced bricks while limiting weight density and water absorption through extensive laboratory work. The recognition of elements influencing the diverse qualities of bricks is a clear purpose of pursuing this issue as project work.


2021 ◽  
Vol 4 (4) ◽  
pp. 432-437
Author(s):  
Muhammad Magana Aliyu ◽  
Muhammad Musa Nuruddeen ◽  
Yahaya Atika Nura

This research was carried out to investigate the effect of partially replacing cement with quarry dust in cement-sand mortar. Tests including setting times, water absorption, compressive strength and density test were carried out on mortar with cement partially replaced with 0%, 5%, 10%, 15%, 20%, 25% and 30% quarry dust and presented. Experimental results show that replacement of quarry dust as partial replacement of cement in cement-sand mortar decrease the initial and final setting times of cement paste and increase the water absorption of the mortar. The partial replacement shows an improvement of compressive strength at 5% quarry dust content after which there is a decrease with increase in quarry dust content at all the ages. The increase in compressive strength at 5% indicates possible pozzalanic activity at that level. Thus quarry dust can be utilized as cement replacement material at 5% dust content. Above this it can be utilized as fine aggregate replacement for use in low-strength mortar applications


Author(s):  
Odiase Stephen Ovbeniyekede ◽  
Dyg. Siti Quraisyah Abg. Adenan ◽  
Mushtaq Ahmad ◽  
Kartini Kamaruddin

2013 ◽  
Vol 795 ◽  
pp. 697-700
Author(s):  
Alaa.A. Shakir ◽  
Sivakumar Naganathan ◽  
Kamal Nasharuddin Bin Mustapha

This paper presents the findings on an investigation done on the use of Quarry dust, Fly ash and Billet scale in developing bricks. Bricks were made with various proportions of those materials and cement. Tests for fresh density, compressive strength, and water absorption were conducted. The compressive strength of bricks ranged from (7.2-26.3) MPa, the water absorption fell in range between (13-14.26) %. The optimum ratio of Fly ash and Billet scale is 1:1. It is shown that bricks with enhanced properties can be developed using these industrial wastes.


2019 ◽  
Vol 1 (6) ◽  
pp. 192-197
Author(s):  
Kanchana T ◽  
Jamunabharathi M ◽  
Thaththathirian S

This study involves the experimental investigation of effect of fly ash and dry sludge on the properties of fly ash bricks. On seeing the present day demand for bricks, an attempt is made to study the behavior of bricks manufactured using, different waste materials like dry sludge and fly ash. The main aim of this work was to compare the compressive strength of the bricks. The disposal of sludge has always been by dumping in the soil, this has hazardous effect on the air and environment at large. They can be recycled for use in construction industry without producing any harm to human and environment. Research has shown that they can be used in manufacturing of cement. Sludge and fly ash mixed with Quarry dust and cement in various percentage keeping the Quarry dust and cement with constant percentage of 30% and 20% respectively, while fly ash is replaced with sludge from 0% to 100% consequently with 20% replacement. The result shows that fly ash and sludge together can be used in the alternative bricks, the compressive strength and water absorption is good and weight of the brick is reduced up to10% from the nominal bricks.


Author(s):  
J.M. Irwan Irwan ◽  
◽  
N. Othman ◽  
H.B. Koh ◽  
◽  
...  

Sand cement brick among favorable building material for low cost house construction due to its low price. Technology development in building material already explored varies waste to be added in improving properties of building materials. Beside that addition of bacteria in building material also proven in literature to improve its properties. In this research addition of bacteria in the cement sand block containing quarry dust (SCBQD) was studied. Several properties namely, compressive strength, depth of carbonation, initial rate of suction (IRS) and water absorption were studied. SCBQD is made from sand, cement, quarry dust and chipping using industrial mix design. In this study, 3% of Enterococcus faecalis (EF) and 5% of Bacillus sp (BSP) bacteria was added in the SCBQD mixes. Three SCBQD mixes were prepared including the control mix without bacteria, SCBQD with 3% EF and SCBQD with 5% BSP. Natural fine aggregate was replaced partially with the quarry dust. 100 mm SCBQD cubes were used to conduct compressive strength, depth of carbonation, initial rate of suction and water absorption test at 7, 14 and 28 days. The experimental results showed that the compressive strength value of SCBQD with addition of bacteria was increased for all curing ages. At 28 days of curing, the compressive strength value for control SCBQD containing quarry without any addition of bacteria is 3.30 MPa, while SCBQD containing quarry dust with addition of 3% of EF bacteria is 3.57 MPa and for SCBQD with 5% of BSP bacteria the value is 4.90 MPa. On the other hand, SCBQD containing 3% EF and 5% BSP gained lower IRS and carbonation depth. Depth of carbonation at 28 days was decreased 9.3% and 20% for SCBQD containing 3% EF and 5% BSP, respectively. Meanwhile, 28-day IRS was reduced 12.9% and 22.6% for SCBQD containing 3% EF and 5% BSP, respectively. In overall, the result shows that, SCBQD with 5% BSP as proven positive and better results when compared to control SCBQD and SCBQD with 3% EF bacteria which is absorb of 12.02% in water absorption. The findings showed that bio-SCBQD containing industrial waste and bacteria has good potential to be used as building material.


2021 ◽  
Author(s):  
Simon Ikechukwu Ichetaonye ◽  
Kingsley Kema Ajekwene ◽  
Sarah Bill Ulaeto ◽  
Moses Ebiowei Yibowei ◽  
Ugonna Kingsley Ugo ◽  
...  

Abstract This study presents the potential of modified Palm Kernel Shell (MPKS) particles in the production of blocks as an alternative building material using cement or clay as binders. Several studies on Palm Kernel Shell (PKS) as a blend with other natural fibres/fillers found that due to its hydrophilic nature, it has low physical and mechanical capabilities in comparison to MPKS, making it less compatible with any polymeric matrix. Experimental tests were conducted to determine the physicomechanical attributes of MPKS/Cement and MPKS/Clay blocks, including characterization of the cement and clay using Atomic Absorption Spectroscopy (AAS), as well as moisture content, water absorption, hardness, apparent porosity, bulk density, compressive strength, and flake. The morphology of the samples was determined using Scanning Electron Microscope (SEM). Results show that MPKS/Cement block samples exhibit superior physicomechanical and morphological properties compared to MPKS/Clay. The MPKS/Cement block sample moisture content ranged between 4.76 – 9.94%. The 80/20 MPKS/Cement sample recorded the most water absorption at 49.5%, and a microhardness value of 82.3 Hv for the 20/80 sample. The MPKS/Clay samples showed higher values of apparent porosity but recorded the least bulk density in the 80/20 samples. The 20/80 MPKS/Cement and MPKS/Clay samples showed the best compressive strength at 63.72 and 50.3 N/mm2 respectively, while 80/20 for both cement and clay displayed very weak compressive strengths. The ratio 20/80 of MPKS/Cement is observed to be the optimum ratio where better properties of the composites were obtained. For the structure industry's long-term viability, MPKS' superior mechanical properties as an aggregate in block manufacturing make it an asset material as an alternative for some high-cost construction resources such as sand.


Sand demand is currently very high and constantly increased up to cause problems in the construction industry. In an effort to solve this problem, various studies have been conducted as an alternative to replace the use of sand and among them are the use of quarry dust as a substitute sand. In this study, quarry dust is used as a substitute of sand in the manufacture of interlocking brick cement-sand. However, it has raised questions about the ability of interlocking brick with quarry dust in terms of compressive strength and water absorption compared to interlocking brick with sand that are often used in construction. Interlocking brick made using an appropriate mixture of sand and quarry dust as the main components, cement as a binding agent. Providing 70 samples of interlocking bricks different mixing and all the interlocking brick dimensions are 250mm x 125mm x 100mm. The various percentages of quarry dust that to be used in the experiment. This percentage ratio is required to determine the appropriate percentage to be used in the production of brick in order to produce optimum strength. Interlocking brick will be tested using hydraulic machines for days 7 to days 28 for compressive strength and water absorption test. The results showed that the highest value of compressive strength test is from a sample of 70% quarry dust of 31.07 N/mm ² which consisted ratio of 1 cement: 1.8 sand: 4.2 quarry dust while for water absorption test, the highest reading was recorded by 0 % sample of quarry dust with a ratio of 1 cement mixture: 5.1 sand of 11.8%. As a conclusion, quarry dust content can affect the compressive strength of bricks, thereby increasing the compressive strength of brick and reduce the rate of water absorb.


Abstract. Our project was built with cenosphere material and low-density brick. The cenosphere bricks may be lighter and stronger than traditional fly ash bricks. Cement is used to replace the cenosphere in fly ash bricks in the following proportions: 230mm x 100mm x 75mm sample size for blend percentage of cenosphere, fly ash, and quarry dust. The results show how compressive strength and water absorption vary with curing age for mixed proportions of the materials mentioned previously. Then we can use the 230mm x 100mm x 75mm specimen size to cast bricks with various mix proportions of cenosphere, fly ash, and quarry dust. The weight, compressive strength, and water absorption of the cenosphere with various proportions of fly ash bricks were then compared. Via comprehensive laboratory work, this investigation is primarily based on optimizing the compressive strength of newly formed bricks thus minimizing weight density and water absorption. A definitive goal of undertaking this point as project work is to recognize factors influencing the different properties of bricks.


Sign in / Sign up

Export Citation Format

Share Document