Activated TIG Welding of AISI 321 Austenitic Stainless Steel for Predicting Parametric Influences on Weld Strength of Tensile Test—Experimental and Finite Element Method Approach

Author(s):  
S. Mohan Kumar ◽  
N. Siva Shanmugam ◽  
K. Sankaranarayanasamy
1998 ◽  
Vol 120 (1) ◽  
pp. 86-92 ◽  
Author(s):  
R. Mohan ◽  
G. M. Wilkowski ◽  
R. Bass ◽  
J. M. Bloom

A comprehensive study of failure assessment diagrams for circumferentially surface-cracked austenitic stainless and ferritic steel pipes was conducted with the use of the finite element method (FEM). While the majority of the analyses were conducted using the line-spring/shell finite element method, some three-dimensional finite element analyses, conducted independently, are also reported in this paper. Comparison of the predictions of the line-spring/shell and three-dimensional analyses reinforce the validity of the former approach for surface-cracked pipes. The results indicated that the ASME Code Case N-494-2 applicable for ferritic steel piping appears reasonably conservative even for pipes with mean radius-to-wall thickness ratios of 20, whereas the results showed that the newly adopted Code Case N-494-3 for austenitic stainless steel piping requires a limit for pipe with mean radius-to-wall thickness ratios larger than 15. For consistency, the limitation of Rm/t ≤ 15 was incorporated in the approved final version of Code Case N-494-3, and was incorporated in Code Case N-494-2 as well. Because these Code cases are applicable only to Class 1 primary nuclear piping, which typically has values of Rm/t ≤ 15, this is not a significant limitation. It was also shown that the choice of definitions of membrane and bending stresses as well as the choice of F1 function values in calculating the elastic part of the J integral have a profound effect on the resulting FAD curves.


2019 ◽  
Vol 53 (3) ◽  
pp. 189-196
Author(s):  
Bhagyashree S. Jadhav ◽  
Ravindranath V. Krishnan ◽  
Vivek J. Patni ◽  
Girish R. Karandikar ◽  
Anita G. Karandikar ◽  
...  

Objective: To evaluate and compare the force and load deflection rate generated by differing unit displacement through 1 to 4 mm of springs that vary in design (Double Delta Closing Loop, Double Vertical T Crossed Closing Loop, Double Vertical Helical Closing Loop and Ricketts Maxillary Retractor), constituting wire materials (stainless steel and beta titanium), and wire dimensions (0.017" × 0.025" and 0.019" × 0.025"). Materials and methods: Computer-assisted design (CAD) model of the said loop springs was created and converted to the finite element method (FEM). The boundary conditions assigned were restraining anterior segment of the loops in all the 3 axes and displacement of the posterior segment progressively only along the x-axis in increments of 1, 2, 3, and 4 mm. Force and load deflection rate were calculated for each incremental displacement. Results: For all loop designs, force and load deflection rate increased with incremental displacement. Loop springs of beta titanium and 0.017" × 0.025" dimension showed lesser force and load deflection rate than those of stainless steel and 0.019" × 0.025", respectively. Ricketts Maxillary Retractor showed the least force and load deflection rate. Comparable force and load deflection values were found for 0.017" × 0.025" Double Vertical T Crossed Loop and 0.019" × 0.025" Double Vertical Helical Closing Loop. Conclusions: Variations in wire dimensions, materials, and designs have a profound effect on force and load deflection rate of the different loop springs studied.


Sign in / Sign up

Export Citation Format

Share Document