Second Life of Energy Storage Battery: Promising Sustainable Growth for Grid and Related Applications

Author(s):  
Akshay Ahuja ◽  
Hem Thukral ◽  
Amol Sawant
2021 ◽  
Vol 295 ◽  
pp. 117007
Author(s):  
Noah Horesh ◽  
Casey Quinn ◽  
Hongjie Wang ◽  
Regan Zane ◽  
Mike Ferry ◽  
...  

2018 ◽  
Vol 64 ◽  
pp. 03003 ◽  
Author(s):  
Nguyen Tam Thanh ◽  
Naumann Maik ◽  
Truong Cong Nam ◽  
Jossen Andreas

Battery energy storage systems (BESSs) are already being deployed for several stationary applications in a technically and economically feasible way. This paper focuses on the revenues of industrial BESSs built from electric vehicle lithiumion batteries with varying states of health. For this analysis, a stationary BESS simulation model is used, that is parameterised with parameters of a 22-kWh automotive battery. The comprehensive model consists of several detailed sub-models, considering battery characteristics, ageing and operating strategies, which allow technical assessment through time series simulation. Therefore, capacity fade and energy losses are considered in this techno-economic evaluation. Potential economically feasible applications of new and second-life batteries, such as photovoltaic home storage, intraday trading and frequency regulation as well as their combined operation are compared. The investigation includes different electricity price scenarios. The combined operation, followed by frequency regulation, is found to have the highest economic viability for the specified electric vehicle battery.


2017 ◽  
Vol 5 (36) ◽  
pp. 18919-18932 ◽  
Author(s):  
Andrea Paolella ◽  
Cyril Faure ◽  
Vladimir Timoshevskii ◽  
Sergio Marras ◽  
Giovanni Bertoni ◽  
...  

Well-known since the 18th century,hexacyanoferrate, or “Prussian blue”, is currently getting its “second life” as a promising material for Li-ion batteries and electrochromic devices.


2020 ◽  
Vol 92 ◽  
pp. 105010
Author(s):  
Wei Wu ◽  
Boqiang Lin ◽  
Chunping Xie ◽  
Robert J.R. Elliott ◽  
Jonathan Radcliffe

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2645
Author(s):  
Gaojun Meng ◽  
Yang Lu ◽  
Haitao Liu ◽  
Yuan Ye ◽  
Yukun Sun ◽  
...  

In order to efficiently use energy storage resources while meeting the power grid primary frequency modulation requirements, an adaptive droop coefficient and SOC balance-based primary frequency modulation control strategy for energy storage is proposed. Taking the SOC of energy storage battery as the control quantity, the depth of energy storage output is adaptively adjusted to prevent the saturation or exhaustion of energy storage SOC. The balanced control strategy is introduced to realize the rational utilization of resources and the fast balance of SOC in the process of primary frequency modulation of energy storage battery under different charge states. Then, four evaluation indexes are proposed to evaluate the effect of primary frequency modulation and SOC maintenance. Taking a regional power grid as an example, a simulation analysis is carried out under step load disturbance and continuous load disturbance. According to the simulation results, the proposed control strategy is effective in power system frequency regulation and battery SOC maintenance.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3423-3430
Author(s):  
Jing Liu

To investigate the hybrid thermal energy storage in photovoltaic fuel cells, a hybrid thermal energy storage control system for photovoltaic fuel cells is explored model construction and simulation. The correlations between the system components and the external factors are analyzed. The results show a positive correlation of the state of charges between the storage battery and the hydrogen storage tank at 0-15 hours, while no correlation exists between them at 15-35 hours. Meanwhile, the sunshine intensity and the photovoltaic output share a positive correlation. In summary, the hybrid thermal energy storage system is critical for photovoltaic fuel cells. The charging and discharging of the battery depends on the photovoltaic intensity. The constructed grouping management model for storage battery is outstanding and satisfies the operational requirements of photovoltaic fuel cells.


2020 ◽  
Vol 54 (11) ◽  
pp. 6878-6887 ◽  
Author(s):  
Dipti Kamath ◽  
Renata Arsenault ◽  
Hyung Chul Kim ◽  
Annick Anctil

Sign in / Sign up

Export Citation Format

Share Document