Study of Mechanical Properties and Thermal Conductivity of Carbon and Basalt Fibre-Reinforced Hybrid Polymer Composites

Author(s):  
V. Durga Prasada Rao ◽  
N. V. N. Sarabhayya ◽  
A. Balakrishna
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1468
Author(s):  
Ummu Raihanah Hashim ◽  
Aidah Jumahat ◽  
Mohammad Jawaid

Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene’s dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Composites are of two essentially different types: ( a ) those made to achieve a unique combination of properties, usually mechanical properties; ( b ) composites formed for ease of processing. The archetype of ( a ) is the fibre or laminated composite. The attainable properties will be reviewed and interesting effects arising from the scale of size of the components discussed, notably crack arrest and thin-film effects. Examples of ( b ) are polymer-polymer composites and some of the processes for forming ceramics and strong metals. A unified example of ( a ) and ( b ) are composites of controlled thermal conductivity.


2021 ◽  
Vol 15 (12) ◽  
pp. 1148-1173
Author(s):  
T. E. Mokoena ◽  
S. I. Magagula ◽  
M. J. Mochane ◽  
T. C. Mokhena

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1984-1991
Author(s):  
Yue Yuan ◽  
Wei Wu ◽  
Huanbo Hu ◽  
Dongmei Liu ◽  
Hui Shen ◽  
...  

The introduction of hybrid fillers in SLS technology is an effective method for the manufacture of thermally conductive polymer composites with high thermal conductivity, complex structures and good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document