Seismic Response of Buildings Resting on Raft Foundation with EPS Geofoam Buffer

Author(s):  
M. V. Sreya ◽  
B. R. Jayalekshmi ◽  
Katta Venkataramana
1984 ◽  
Vol 19 (3) ◽  
pp. 369-380 ◽  
Author(s):  
Carl F. Neuss ◽  
Bruce F. Maison

2014 ◽  
Vol 695 ◽  
pp. 613-616
Author(s):  
Mohd Faiz Mohammad Zaki ◽  
Mohammad Fadzli Ramli ◽  
Afizah Ayob ◽  
Mohd Taftazani Ahmad

It is becoming a great challenge for civil engineers to design a foundation which able to minimize the effect of an earthquake. A major earthquake produces a strong ground motion in the subsoil and surface structures supported on the soil mass will be induced to move and absorb the dynamic forces. Seismic retrofit of existing foundations is an alternative. However, the modification of this existing foundation toward earthquake resistances raises issues which are far from being totally resolved. Innovative material such as EPS is widely accepted in structural engineering due to its characteristic to absorb the dynamic force effectively. This EPS material demonstrated the practicality and has been applied for geotechnical engineering for various reasons. Based on this, a research which is related to the application of EPS in mitigating the earthquake forces, particularly for raft foundations was conducted properly in this research. The various types and thickness of EPS located beneath the raft foundation and over the soft soil are studied. A finite element program is utilized to develop the computer simulation models. Based on the results, Expended Polystyrene (EPS) Geofoam, placed beneath the raft foundation is able to produces the minimum settlements when subjected to earthquake loading rather than raft foundation modeled without EPS and increasing the density of EPS will simultaneously decrease the settlement of a foundation.


2013 ◽  
Vol 40 (9) ◽  
pp. 875-886 ◽  
Author(s):  
Jagmohan Humar ◽  
Marjan Popovski

The roof framing in single-storey buildings with large foot prints, generally used for commercial, educational, or institutional purposes, often consists of a flexible steel deck or wood panel diaphragm. Resistance to seismic lateral loads is provided by steel bracings, masonry shear walls, concrete shear walls, wood panel shear walls, or cold formed wall systems. The response of such buildings to seismic loads is strongly affected by the flexibility of the roof diaphragm. Diaphragm flexibility alters the manner in which the inertia forces, shears, and bending moments are distributed along the length of the diaphragm. In addition, it causes a significant increase in the ductility demand on the lateral load resisting system that is expected to be strained into the inelastic range under the design earthquake. Results of a study on the linear and nonlinear seismic response of buildings with flexible diaphragms are presented.


Sign in / Sign up

Export Citation Format

Share Document