Numerical Simulation and Parametric Study of Penetration Effect for an Ogive-Nose-Shaped Projectiles Against Concrete Target

Author(s):  
Patel Yash Bipinbhai ◽  
P. C. Tewari ◽  
Mukesh Kumar ◽  
Pravendra Kumar
Author(s):  
J.Ajay Paul ◽  
Sagar Chavan Vijay ◽  
U. Magarajan ◽  
R.Thundil Karuppa Raj

In this experiment the single cylinder air cooled engines was assumed to be a set of annular fins mounted on a cylinder. Numerical simulations were carried out to determine the heat transfer characteristics of different fin parameters namely, number of fins, fin thickness at varying air velocities. A cylinder with a single fin mounted on it was tested experimentally. The numerical simulation of the same setup was done using CFD. The results validated with close accuracy with the experimental results. Cylinders with fins of 4 mm and 6 mm thickness were simulated for 1, 3, 4 &6 fin configurations.


2020 ◽  
Vol 60 (9) ◽  
pp. 2111-2121
Author(s):  
Youbin Kwon ◽  
Jihyun Yoon ◽  
Seung‐Yeol Jeon ◽  
Daehwan Cho ◽  
Kwangjin Lee ◽  
...  

Author(s):  
Kiyoharu Tsunokawa ◽  
Taku Ohira ◽  
Naoki Miura ◽  
Yasumi Kitajima ◽  
Daisuke Yoshimura

Although the reinforcement for openings is checked in accordance with design / construction standard when thinning was observed in T-pipes, this evaluation becomes too conservative or requires much time and effort. This paper describes additional parametric study results and proposes a guideline for thickness management of wall thinning T-pipes. On the other papers related to this project, the experiment and numerical simulation results are reported. This paper referred these results and performed further investigation.


2014 ◽  
Vol 638-640 ◽  
pp. 1750-1753
Author(s):  
Yu Chao Zheng ◽  
Yang Yan ◽  
Pei Jun Wang

A systematic parametric study was carried out to investigate the elastic and elastic-plastic buckling behaviors of imperfect steel shell subject to axial compression and internal pressure. Studied parameters include the magnitude of internal pressure, steel strength, and ratio of cylinder radius to shell thickness. Design equations were proposed for calculating the elastic and elastic-plastic buckling strength of imperfect steel shells under combination of axial compression and internal pressure. The buckling strength predicated by proposed equations agrees well with that from the numerical simulation.


1992 ◽  
Vol 114 (1) ◽  
pp. 50-62 ◽  
Author(s):  
J. Y. Dyau ◽  
S. Kyriakides

This paper is concerned with the response of long, relatively thin-walled tubes bent into the plastic range in the presence of axial tension. The work is motivated by the design needs of pipelines installed and operated in deep offshore waters. The problem is studied through a combination of experiment and analysis. In the experiments, long metal tubes were bent over a smooth, circular, rigid surface (mandrel). Bending of the tubes was achieved by shear and axial end loads. The experimental arrangement is such that a significant section of the test specimen is loaded and deformed in an axially uniform fashion. The ovalization induced in the specimen was measured as a function of the axial load in the tube for two mandrel radii. A two-dimensional numerical simulation of the problem has been developed and validated against the experimental results. This analysis was used to conduct a parametric study of the effect of tension on the ovalization induced in a long tube during bending.


2010 ◽  
Vol 163-167 ◽  
pp. 1217-1221 ◽  
Author(s):  
Xi Cheng Huang ◽  
Yi Xia Yan ◽  
Wei Zhou Zhong ◽  
Yu Ze Chen ◽  
Jian Shi Zhu

This paper demonstrates the application of both numerical simulation and empirical equation in predicting the penetration of a concrete target by an ogive-nosed projectile. The results from the experiment performed by Gran and Frew are used as a benchmark for comparison. In the numerical simulations a 3.0-caliber radius-head steel ogival-nose projectile with a mass of 47 kg is fired against cylindrical concrete target with a striking velocity of 315 m/s. In the simulation the smooth particles hydrodynamics SPH-Lagrange coupling method is applied to predict the maximum depth of penetration. For calculation of DoP and response of projectile the SPH-Lagrange method can give satisfactory results.


2017 ◽  
Vol 99 (1) ◽  
pp. 47-69 ◽  
Author(s):  
M. Sasamori ◽  
O. Iihama ◽  
H. Mamori ◽  
K. Iwamoto ◽  
A. Murata

2012 ◽  
Vol 466-467 ◽  
pp. 347-351
Author(s):  
Tao Wang ◽  
Wen Li Yu ◽  
San Qiang Dong ◽  
Yun Liang Gao

In this paper, the penetration effect of a rhombic fragment penetrating sandwich in an oblique incidence with 30º impact angle at the velocity of 300 m•s-1, 350 m•s-1, 400 m•s-1, 450 m•s-1, 500 m•s-1 and 600 m•s-1 is simulated by LS-DYNA. The dynamic response and the damage patterns of sandwich plate and the movement rules of the rhombic fragment are acquired. The ratio of energy loss and the maximum resultant acceleration of the rhombic fragment are compared with that of the spherical respectively.


Sign in / Sign up

Export Citation Format

Share Document