Efficient Data Search and Update in Named Data Networking with Integrity Preservation

Author(s):  
Tanusree Chatterjee ◽  
Chirasree Pal ◽  
Apurba Kumar Gorai ◽  
Sipra DasBit
2022 ◽  
pp. 1-26
Author(s):  
Hengshuo Liang ◽  
Lauren Burgess ◽  
Weixian Liao ◽  
Chao Lu ◽  
Wei Yu

The advance of internet of things (IoT) techniques enables a variety of smart-world systems in energy, transportation, home, and city infrastructure, among others. To provide cost-effective data-oriented service, internet of things search engines (IoTSE) have received growing attention as a platform to support efficient data analytics. There are a number of challenges in designing efficient and intelligent IoTSE. In this chapter, the authors focus on the efficiency issue of IoTSE and design the named data networking (NDN)-based approach for IoTSE. To be specific, they first design a simple simulation environment to compare the IP-based network's performance against named data networking (NDN). They then create four scenarios tailored to study the approach's resilience to address network issues and scalability with the growing number of queries in IoTSE. They implement the four scenarios using ns-3 and carry out extensive performance evaluation to determine the efficacy of the approach concerning network resilience and scalability. They also discuss some remaining issues that need further research.


2013 ◽  
Author(s):  
Charles Duan ◽  
Cynthia Grady ◽  
Paul Ohm ◽  
James Grimmelmann

Author(s):  
Rui Hou ◽  
Shuo Zhou ◽  
Mengtian Cui ◽  
Lingyun Zhou ◽  
Deze Zeng ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4064
Author(s):  
Muktar Hussaini ◽  
Muhammad Ali Naeem ◽  
Byung-Seo Kim

Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution.


Sign in / Sign up

Export Citation Format

Share Document