Branch Cuts of the Square Root with Complex Argument

Author(s):  
Martin Ochmann ◽  
Rafael Piscoya
2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Mark Daniel Ward

International audience The webpage of Herbert Wilf describes eight Unsolved Problems. Here, we completely resolve the third of these eight problems. The task seems innocent: find the first term of the asymptotic behavior of the coefficients of an ordinary generating function, whose coefficients naturally yield rational approximations to $\pi$. Upon closer examination, however, the analysis is fraught with difficulties. For instance, the function is the composition of three functions, but the innermost function has a non-zero constant term, so many standard techniques for analyzing function compositions will completely fail. Additionally, the signs of the coefficients are neither all positive, nor alternating in a regular manner. The generating function involves both a square root and an arctangent. The complex-valued square root and arctangent functions each rely on complex logarithms, which are multivalued and fundamentally depend on branch cuts. These multiple values and branch cuts make the function extremely tedious to visualize using Maple. We provide a complete asymptotic analysis of the coefficients of Wilf's generating function. The asymptotic expansion is naturally additive (not multiplicative); each term of the expansion contains oscillations, which we precisely characterize. The proofs rely on complex analysis, in particular, singularity analysis (which, in turn, rely on a Hankel contour and transfer theorems).


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 79-88
Author(s):  
Sergey B. Gashkov ◽  
◽  
Aleksandr B. Frolov ◽  
Elizaveta Р. Popova ◽  
◽  
...  

2013 ◽  
Vol 61 (2) ◽  
pp. 371-377
Author(s):  
M. Siwczyński ◽  
A. Drwal ◽  
S. Żaba

Abstract The simple digital filters are not sufficient for digital modeling of systems with distributed parameters. It is necessary to apply more complex digital filters. In this work, a set of filters, called the digital function filters, is proposed. It consists of digital filters, which are obtained from causal and stable filters through some function transformation. In this paper, for several basic functions: exponential, logarithm, square root and the real power of input filter, the recursive algorithms of the digital function filters have been determined The digital function filters of exponential type can be obtained from direct recursive formulas. Whereas, the other function filters, such as the logarithm, the square root and the real power, require using the implicit recursive formulas. Some applications of the digital function filters for the analysis and synthesis of systems with lumped and distributed parameters (a long line, phase shifters, infinite ladder circuits) are given as well.


Author(s):  
Beatriz Liara Carreira ◽  
Analice Costacurta Brandi ◽  
Laison Junio da Silva Furlan ◽  
Matheus Tozo de Araujo ◽  
Leandro Franco de Souza

Sign in / Sign up

Export Citation Format

Share Document