Finite Element Analysis of Piled Raft Foundation in Clay and Sand

Author(s):  
Monika Lodha ◽  
R. P. Arora ◽  
Akash Solanki
2014 ◽  
Vol 580-583 ◽  
pp. 3-8 ◽  
Author(s):  
Anhtuan Vu ◽  
Ducphong Pham ◽  
Tuonglai Nguyen ◽  
Yu He

This paper highlights settlement behaviour of piled raft foundation by 3D finite element analysis through Plaxis 3D Foundation program. The effects of pile number, pile length, pile layout and pile spacing on the behaviour of piled raft foundation were studied. The numerical results show that: Piled raft foundation has much more efficency to reduce settlement than that of traditional raft foundation. The value of vertical defomation decreases as the result of the increase of pile number, pile length, pile spacing and vice versa. Pile layout has significant effect on both value and location of maximum settlement of piled raft foundation.


2020 ◽  
Vol 26 (3) ◽  
pp. 127-144
Author(s):  
Huda Hussien Ahmed ◽  
Salah R. Al-Zaidee

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis. The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate the actual geostatic stress on the site. Comparing between numerical and experimental results indicate that the proposed finite element model is accurate and adequate and it can be used in future work to simulate more complicated practical problems of piled-raft foundations. After its validation, this model was used to investigate the effectiveness of using piled with a raft foundation that subjected to eccentric loading. In this parametric study, the value of eccentricity  was taken equal to , , and . The numerical results indicated that there is a significant decrease in the bearing capacity for unpiled raft foundation compared to the piled raft foundation for the same eccentricity of the applied load.  


2017 ◽  
Vol 5 (3) ◽  
pp. 193-197
Author(s):  
Sanjeev Gill ◽  
Seema Rani

In this paper piled raft foundation has been analysed by nonlinear finite element method. The three dimensional nonlinear finite element analyses predict the actual behaviour of axial load distribution. The axial load variation is nonlinear for all the piles. For all pressure the element stress is more than the element stress. For any pressure the nodal deflection is maximum at top and minimum at bottom. Up to certain height the element stress is almost zero for all pressures. After that height the element stress increases with increase in height. The element stress increases with increase in pressure the measurement of axial load distribution in pile in field is very difficult and costly.


2013 ◽  
Vol 712-715 ◽  
pp. 1037-1040
Author(s):  
Wei Yu Wang ◽  
Tuo Zhao

The numerical analysis model about pile-raft foundation was bulited by using finite element analysis software.The raft settlement, pile-top counterforce and soil counter force were analyzed by changing the thickness of raft .The thickness were 0.15m,0.20m,0.25m and 0.30m. It was said that it could effectively reduce the raft uneven settlement and realize the redistribution of the pile and soil counterforce by increasing raft thickness.After changing the pile length and the raft thickness The rule of raft settlement were analyzed. After the pile length and thickness of optimization,it was good to control settlement of the pile raft foundation.


2020 ◽  
Vol 26 (5) ◽  
pp. 156-171
Author(s):  
Athraa Mohammed Jawad Alhassani ◽  
Ala Nasir Aljorany

Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced.  The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studied numerically by means of 3D Finite Element analysis via ABAQUS software. The numerical analysis was carried out to investigate the effect of thickness and stiffness of the cushion, pile length, stiffness of foundation soil, and stiffness of bearing soil on the performance of the unconnected piled raft. The results indicate that when unconnected piles are used, the axial stress along the pile is significantly reduced e.g. the axial stress at head of unconnected pile is decreased by 37.8% compared with that related to connected pile. It is also found that the stiffness and thickness of the cushion, and stiffness of foundation soil have considerable role on reduction the settlement.


Sign in / Sign up

Export Citation Format

Share Document