Protection Schemes for Meshed VSC-HVDC Transmission Systems for Large-Scale Offshore Wind Farms

Author(s):  
J. Yang ◽  
J. E. Fletcher
Author(s):  
M. Mohan ◽  
K. Panduranga Vittal

In recent years, offshore wind energy has increased significantly. The continuous increase in the offshore wind power generation level brings the requirement of the offshore wind farms (OWFs) integration with an AC grid. The multi-terminal (MT) voltage source converters (VSC)-based high voltage direct current (HVDC) transmission system is an emerging technology and also the best option to interconnect the large-scale OWFs to the AC grid. This paper presents the design, modeling, and control of MT VSC-HVDC transmission system linked offshore wind farms. Different cases of MT VSC-HVDC transmission systems are developed, and its simulation studies are carried out using PSCAD/EMTDC. The test results show the transient performance of the MT VSC-HVDC transmission systems under various AC and DC fault conditions. The studies also include the influence of wind variabilities as in the form of gust and ramp pattern during steady state and fault conditions.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Zhengxuan Li ◽  
Qiang Song ◽  
Feng An ◽  
Biao Zhao ◽  
Zhanqing Yu ◽  
...  

2020 ◽  
Vol 165 ◽  
pp. 06012
Author(s):  
Jinke Li ◽  
Jingyuan Yin ◽  
Yonggao Guan ◽  
Zhenquan Wang ◽  
Tao Niu ◽  
...  

High-voltage direct current (HVDC) transmission systems are a promising solution for long distances power transmission offshore wind farms. In order to satisfy the reliability requirements of receiving-end grid and system, the topology, operation and control of HVDC transmission systems for offshore wind farms should be paid more attention. Thus, the aim of this manuscript is to offer a comprehensive summary of existing topology, operation and control methods applied to HVDC transmission system for offshore wind farms. Special attention is provided to the ac grid fault through control methods, droop control methods, power sharing rules and specific requirements of HVDC system planning, model, design and investment. The results are important for understanding the operation of VSC-HVDC in offshore wind farms.


2016 ◽  
Vol 7 (4) ◽  
pp. 1398-1407 ◽  
Author(s):  
Yingying Chen ◽  
Zhao Yang Dong ◽  
Ke Meng ◽  
Feng ji Luo ◽  
Zhao Xu ◽  
...  

2020 ◽  
Author(s):  
Corinna Schrum ◽  
Naveed Akhtar ◽  
Nils Christiansen ◽  
Jeff Carpenter ◽  
Ute Daewel ◽  
...  

<p>The North Sea is a world-wide hot-spot in offshore wind energy production and installed capacity is rapidly increasing. Current and potential future developments raise concerns about the implications for the environment and ecosystem. Offshore wind farms change the physical environment across scales in various ways, which have the potential to modify biogeochemical fluxes and ecosystem structure. The foundations of wind farms cause oceanic wakes and sediment fluxes into the water column. Oceanic wakes have spatial scales of about O(1km) and structure local ecosystems within and in the vicinity of wind farms. Spatially larger effects can be expected from wind deficits and atmospheric boundary layer turbulence arising from wind farms. Wind disturbances extend often over muliple tenths of kilometer and are detectable as large scale wind wakes. Moreover, boundary layer disturbances have the potential to change the local weather conditions and foster e.g. local cloud development. The atmospheric changes in turn changes ocean circulation and turbulence on the same large spatial scales and modulate ocean nutrient fluxes. The latter directly influences biological productivity and food web structure. These cascading effects from atmosphere to ocean hydrodynamics, biogeochemistry and foodwebs are likely underrated while assessing potential and risks of offshore wind.</p><p>We present latest evidence for local to regional environmental impacts, with a focus on wind wakes and discuss results from observations, remote sensing and modelling.  Using a suite of coupled atmosphere, ocean hydrodynamic and biogeochemistry models, we quantify the impact of large-scale offshore wind farms in the North Sea. The local and regional meteorological effects are studied using the regional climate model COSMO-CLM and the coupled ocean hydrodynamics-ecosystem model ECOSMO is used to study the consequent effects on ocean hydrodynamics and ocean productivity. Both models operate at a horizontal resolution of 2km.</p>


Sign in / Sign up

Export Citation Format

Share Document