Collector System Layout Optimization Framework for Large-Scale Offshore Wind Farms

2016 ◽  
Vol 7 (4) ◽  
pp. 1398-1407 ◽  
Author(s):  
Yingying Chen ◽  
Zhao Yang Dong ◽  
Ke Meng ◽  
Feng ji Luo ◽  
Zhao Xu ◽  
...  
2020 ◽  
Author(s):  
Corinna Schrum ◽  
Naveed Akhtar ◽  
Nils Christiansen ◽  
Jeff Carpenter ◽  
Ute Daewel ◽  
...  

<p>The North Sea is a world-wide hot-spot in offshore wind energy production and installed capacity is rapidly increasing. Current and potential future developments raise concerns about the implications for the environment and ecosystem. Offshore wind farms change the physical environment across scales in various ways, which have the potential to modify biogeochemical fluxes and ecosystem structure. The foundations of wind farms cause oceanic wakes and sediment fluxes into the water column. Oceanic wakes have spatial scales of about O(1km) and structure local ecosystems within and in the vicinity of wind farms. Spatially larger effects can be expected from wind deficits and atmospheric boundary layer turbulence arising from wind farms. Wind disturbances extend often over muliple tenths of kilometer and are detectable as large scale wind wakes. Moreover, boundary layer disturbances have the potential to change the local weather conditions and foster e.g. local cloud development. The atmospheric changes in turn changes ocean circulation and turbulence on the same large spatial scales and modulate ocean nutrient fluxes. The latter directly influences biological productivity and food web structure. These cascading effects from atmosphere to ocean hydrodynamics, biogeochemistry and foodwebs are likely underrated while assessing potential and risks of offshore wind.</p><p>We present latest evidence for local to regional environmental impacts, with a focus on wind wakes and discuss results from observations, remote sensing and modelling.  Using a suite of coupled atmosphere, ocean hydrodynamic and biogeochemistry models, we quantify the impact of large-scale offshore wind farms in the North Sea. The local and regional meteorological effects are studied using the regional climate model COSMO-CLM and the coupled ocean hydrodynamics-ecosystem model ECOSMO is used to study the consequent effects on ocean hydrodynamics and ocean productivity. Both models operate at a horizontal resolution of 2km.</p>


2007 ◽  
Vol 1 (2) ◽  
pp. 107 ◽  
Author(s):  
G. Quinonez-Varela ◽  
G.W. Ault ◽  
O. Anaya-Lara ◽  
J.R. McDonald

2015 ◽  
Vol 8 (4) ◽  
pp. 3481-3522 ◽  
Author(s):  
P. J. H. Volker ◽  
J. Badger ◽  
A. N. Hahmann ◽  
S. Ott

Abstract. We describe the theoretical basis, implementation and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.


2012 ◽  
Vol 1 (33) ◽  
pp. 90 ◽  
Author(s):  
Arne Stahlmann ◽  
Torsten Schlurmann

Regarding offshore constructions, there is still a lack in knowledge of scour progression for complex structures like foundations for offshore wind energy converters at present, which is however necessary for its dimensioning. As an example of such complex structure types, tripod foundations are constructed in German offshore wind farms at present. In order to describe physical processes and influencing factors on scour progression from a scientific point of view, comprehensive investigations on the scouring phenomena for tripod foundations have been carried out and will be partly presented here. The overall investigation method consists of a combination of 1:40 small and 1:12 large scale physical model tests in wave flumes, numerical simulations using CFD methods and in-situ measured scour data. For the numerical modeling part, a sediment transport model formulation has been implemented into OpenFOAM software code. The results show a general variability of scour depending on the load boundary conditions and structural parameters. Scours occur both at the foundation piles and directly under the structure, which in this form could not be predicted using standard approaches, but which has to be taken into account when regarding the soil mechanical stability and the final dimensioning of the foundations.


Sign in / Sign up

Export Citation Format

Share Document