Advances in Interface Modeling

Author(s):  
Mark K. M. Ho
Keyword(s):  
Author(s):  
Huy Anh Nguyen ◽  
Hanlin Wang ◽  
Satoyuki Tanaka ◽  
Selda Oterkus ◽  
Erkan Oterkus

2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Biao Shen ◽  
Jiewei Liu ◽  
Gustav Amberg ◽  
Minh Do-Quang ◽  
Junichiro Shiomi ◽  
...  

2014 ◽  
Vol 969 ◽  
pp. 97-100 ◽  
Author(s):  
Eva Kormaníková

The paper deals with numerical modeling of delamination of laminate plate consists of unidirectional fiber reinforced layers. The methodology adopts the first-order shear laminate plate theory and fracture and contact mechanics. There are described sublaminate modeling and delamination modeling by the help of finite element analysis. With the interface modeling there is calculated the energy release rate along the lamination front. Numerical results are given for mixed mode delamination problems by implementing the method in a 2D finite analysis, which utilizes shear deformable plate elements and interface elements. Numerical example is done by the commercial ANSYS code.


1999 ◽  
Vol 568 ◽  
Author(s):  
Lahir Shaik Adam ◽  
Mark E. Law ◽  
Omer Dokumaci ◽  
Yaser Haddara ◽  
Cheruvu Murthy ◽  
...  

ABSTRACTNitrogen implantation can be used to control gate oxide thicknesses [1,2]. This study aims at studying the fundamental behavior of nitrogen diffusion in silicon. Nitrogen at sub-amorphizing doses has been implanted as N2+ at 40 keV and 200 keV into Czochralski silicon wafers. Furnace anneals have been performed at a range of temperatures from 650°C through 1050°C. The resulting annealed profiles show anomalous diffusion behavior. For the 40 keV implants, nitrogen diffuses very rapidly and segregates at the silicon/ silicon-oxide interface. Modeling of this behavior is based on the theory that the diffusion is limited by the time to create a mobile nitrogen interstitial.


Author(s):  
Pin Zhang ◽  
Yi Yang ◽  
Zhen-Yu Yin

2008 ◽  
Vol 403 (2-3) ◽  
pp. 505-508 ◽  
Author(s):  
I. Jancskar ◽  
Z. Sari ◽  
L. Szakonyi ◽  
A. Ivanyi

Sign in / Sign up

Export Citation Format

Share Document